Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (2): 214-220    DOI: 10.3724/SP.J.1037.2012.00446
Current Issue | Archive | Adv Search |
SYNTHESIS AND ELECTRICAL PROPERTIES OF NiCrAl ELECTRO-THERMAL ALLOY FOAMS
ZHANG Yuelai, DUAN Deli, ZHAO Yuhang, HOU Sihan, LI Shu
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

ZHANG Yuelai, DUAN Deli, ZHAO Yuhang, HOU Sihan, LI Shu. SYNTHESIS AND ELECTRICAL PROPERTIES OF NiCrAl ELECTRO-THERMAL ALLOY FOAMS. Acta Metall Sin, 2013, 49(2): 214-220.

Download:  PDF(2748KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

NiCrAl alloy is a kind of electro--thermal material with high temperature performance and metal foams have high specific surface area and high porosity. Therefore NiCrAl alloy foams can be used in many applications such as fluids heating, electro-thermal catalyst bed and so on. In this work the NiCrAl foams were made from NiCr foams by using pack-aluminizing and vacuum homogenizing heat treatment. Effects of the vacuum homogenizing heat treatment temperature on evaporation of metal elements were investigated. The composition and structure of the NiCrAl foams were analysed by SEM and XRD and their relationship with the apparent resistivity of NiCrAl foams was discussed. The results indicate that NiCrAl foams with uniform composition and structure can be prepared by the process of pack-aluminizing on NiCr foams. The composition of NiCrAl foams can be controlled by adjusting temperature of pack-aluminizing, and the uniform structure of NiCrAl foams is obtained after appropriate vacuum homogenizing heat treatment. After pack-aluminizing, the foams possessed multiphase structure consisting of Ni solid solution, Cr, Ni2Al3, NiAl, Ni3Al and their resistivity decreased with the Al content increasing. NiCrAl foams with low content of Al after vacuum homogenizing heat treatment had single Ni solid solution phase. The resistivity of NiCrAl foams is higher than NiCr foams's. NiCrAl foams exhibited the maximum apparent resistivity when the content of Al was about 5% (mass fraction). With the content of Al above 5% the resistivity of NiCrAl foams decreased due to the formation of Ni3Al phase. If the content of Cr and Al increased further Cr precipitation occurred in the alloy foams. Cr precipitation greatly lowered the resistivity of NiCrAl foams. NiCr30Al9 foam is not suitable as electro-thermal alloy.

Key words:  pack-aluminizing      NiCrAl foam      vacuum homogenizing heat treatment      metal evaporation      apparent resistivity     
Received:  25 July 2012     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00446     OR     https://www.ams.org.cn/EN/Y2013/V49/I2/214

[1] Cooksona E J, Floyda D E, Shih A J. Int J Mech Sci, 2006; 48: 1314


[2] Amori K E, Laibi H A. Energy, 2011; 36: 4524

[3] Walther G, Kloden B, Buttner T, Weissgorber T, Kieback T,Bohm A, Naumann D, Saberi S, Timberg L. Adv Eng Mater, 2008; 10: 803

[4] Hodge A M, Dunand D C. Intermetallics, 2001; 9: 581

[5] Choe H, Dunand D C. Acta Mater, 2004; 52: 1283

[6] Liu P S, Fu C, Li T F, Yu Q, Lu M. Acta Metall Sin, 1999; 35: 509

(刘培生, 付超, 李铁藩, 于青, 吕明. 金属学报, 1999; 35: 509)

[7] Langlois S, Coeuret F. J Appl Electrochem, 1989; 19: 43

[8] Gibson L J, Ashaby M F. Cellular Solid: Structure and Properties.

2nd Ed, Cambridge: Cambridge University Press, 1997: 6

[9] Huang P Y. The Principle of Powder Metallurgy. 2nd Ed, Beijing: Metallurgical Industry Press, 1997: 20

(黄培云. 粉末冶金原理. 第二版, 北京: 冶金工业出版社, 1997: 20)

[10] Wang X, Yu J L. J Exp Mech, 2001; 16: 438

(王曦, 虞吉林. 实验力学, 2001; 16: 438)

[11] Goussery V, Bienwenu Y, Forest S, Gourgues A F, Colin C, Bartout J D. Adv Eng Mater, 2004; 6: 432

[12] Kenesei P, Kadar C, Rajkovits Z, Lendvai J. Scr Mater, 2004; 50: 295

[13] Michailidis N, Stergioudi F, Omar H, Tsipas D N. Adv Eng Mater, 2008; 10: 1122

[14] Zhang Y L, Duan D L, Zhao Y H, Li S. J Aeronaut Mater, 2011; 31(suppl): 255

(张月来, 段德莉, 赵宇航, 李曙. 航空材料学报, 2011; 31(增刊): 255)

[15] Duan D L. PhD Dissertation, Graduate University of Chinese Academy of Sciences, Beijing, 2006

(段德莉. 中国科学院研究生院博士学位论文, 北京, 2006)

[16] Goward G W, Boone D H, Giggins C S. ASM Trans Quart, 1967; 60: 228

[17] Goward G W. J Met, 1970; 22: 31

[18] Goward G W, Boone D H. Oxid Met, 1971; 3: 475

[19] Lin C C, Tu D, Shen P, Gan D. Chin J Mater Sci, 1984; 16A: 74

[20] Tu D C, Seigle L L. Thin Solid Films, 1982; 95: 47

[21] Huang H L, Chen Y Z, Gan D. Mater Sci Eng, 2002; A328: 238

[22] Huang H L, Gan D. Mater Sci Eng, 2008; A485: 550

[23] Chien A, Gan D, Shen P. Mater Sci Eng, 1996; A206: 215

[24] Raghavan V. J Phase Equilib Diff, 2010; 31: 381

[25] Huang W, Chang Y A. Intermetallics, 1999; 7: 863

[26] Dupin N, Ansara I, Sundman B. Calphad, 2001; 25: 279

[27] Kaufman L, Nesor H. Metall Mater Trans, 1974; 5B: 1623

[28] Bao E, Tian S J. Vacuum Heat Treatment. Shenyang: Liaoning Science and Technology Press, 2009: 25

(包耳, 田绍洁. 真空热处理. 沈阳: 辽宁科学技术出版社, 2009: 25)

[29] Tian S. The Physical Properties of Materials. Beijing: Beihang University Press, 2004: 37

(田莳. 材料物理性能. 北京: 北京航空航天大学出版社, 2004: 37)

[30] Merchant S M, Notis M R. Mater Sci Eng, 1984; 66: 47

[31] Oforka N C, Haworth G W. Scand J Metall, 1987; 16: 184
No related articles found!
No Suggested Reading articles found!