Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (11): 1342-1348    DOI: 10.3724/SP.J.1037.2012.00241
Current Issue | Archive | Adv Search |
EFFECT OF TEMPERATURE ON MICROSTRUCTURE AND NANOINDENTATION MECHANICAL PROPERTIES OF ELECTRODEPOSITED NANO-TWINNED Ni
CHENG Yuhao, ZHANG Yuefei, MAO Shengcheng, HAN Xiaodong, ZHANG Ze
1) Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing 100124
2) Department of Materials Science, Zhejiang University, Hangzhou 310058
Cite this article: 

CHENG Yuhao ZHANG Yuefei MAO Shengcheng HAN Xiaodong ZHANG Ze. EFFECT OF TEMPERATURE ON MICROSTRUCTURE AND NANOINDENTATION MECHANICAL PROPERTIES OF ELECTRODEPOSITED NANO-TWINNED Ni. Acta Metall Sin, 2012, 48(11): 1342-1348.

Download:  PDF(984KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The nanocrystalline nickel thin films with high density nano-scale growth twins were synthesized by means of pulse electrodeposition technology. Three samples were deposited at different bath temperatures of 30, 50 and 80 ℃, by keeping all the other parameters as constant, such as electrolyte, pH value, current density and on-time and off-time period. The effect of temperature on deposition rate, sample texture, grain size, and twin boundary length and twin lamella thickness were systematically analyzed by SEM, XRD and TEM techniques. The microscopical feature of twin boundary were investigated by HRTEM. The results show that the nano-twinned nickel films deposited at the rates ranging from 20 nm/s to 30 nm/s have a preferred growth plane of (220) when deposited at 30 and 50 ℃, but changes to (200) when the temperature increases to 80 ℃.  With increasing temperature, the grain size decreases from 900 to 300 nm, and the twin lamella thickness decreases from 60 to 28 nm. The relationship between deposition temperature and nanoindentation hardness for these films, moreover was determined. The nanoindentation hardness measurement indicates that the average indentation hardness of these films reaches a maximum value of 3.75 GPa at 50 ℃.

Key words:  electrodeposition      nano-twinned Ni      microstructure      nanoindentation hardness     
Received:  28 June 2012     
ZTFLH:  TG146.15 TG113.11  
Fund: 

Supported by National Natural Science Foundation of China (Nos.10904001 and 51001003) and Key Project Funding Scheme of Beijing Municipal Education Committee (No.KZ201010005002)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00241     OR     https://www.ams.org.cn/EN/Y2012/V48/I11/1342

[1] Christian J W, Mahajan S. Prog Mater Sci, 1995; 39: 1

[2] Lu L, Shen Y F, Chen X H, Qian L H, Lu K. Science, 2004; 304: 422

[3] Shen Y F, Lu L, Lu Q H, Jin Z H, Lu K. Scr Mater, 2005; 52: 989

[4] Lu L, Chen X, Huang X, Lu K. Science, 2009; 323: 30

[5] Li X Y, Wei Y J, Lu L, Lu K, Gao H J. Nature, 2010; 464: 877

[6] Lu K, Lu L, Suresh S. Science, 2009; 324: 349

[7] Lu L, Lu K. Acta Metall Sin, 2010; 46: 1422

(卢磊, 卢柯. 金属学报, 2010; 46: 1422)

[8] Zhang Y F, Cheng Y H, Han X D, Zhang Z. Chin Pat, 201220267938.6, 2011

(张跃飞, 成宇浩, 韩晓东, 张泽. 中国专利, 201220267938.6, 2011)

[9] Cheng Y H, Zhang Y F, Mao S C, Han X D, Zhang Z. J Chin Electro Microsc Soc , 2011; (Suppl): 45

(成宇浩, 张跃飞, 毛圣成, 韩晓东, 张泽. 电子显微学报, 2011; (增刊): 45)

[10] Zhang X, Wang H, Chen y H, Lu L, Lu K, Hoagland R G, Misra A. Appl Phys Lett, 2006; 88: 173116

[11] Anderoglu O, Misra A, Wang H, Ronning F, Hundley M F, Zhang X. Appl Phys Lett, 2008; 93: 083108

[12] Yan F, Zhang H W, Tao N R, Lu K. J Mater Sci Technol, 2011; 27: 673

[13] Hong C S, Tao N R, Huang X, Lu K. Acta Mater, 2010; 58: 3103

[14] Tao N R, Lu K. J Mater Sci Technol, 2007; 23: 771

[15] Tu Z M, Li N, Hu H L, Cao L X. Electrodeposited Nanocrystalline Material Technology. Beijing: National Defense Industry Press, 2008: 66

(屠振密, 李宁, 胡会利, 曹立新. 电沉积纳米晶体材料技术. 北京: 国防工业出版社, 2008: 66)

[16] Chen T Y. Nickel Plating Fault Handling and Examples. Beijing: Chemical Industry Press, 2010: 4

(陈天玉. 镀镍故障处理及实例. 北京: 化学工业出版社, 2010: 4)

[17] Peng X, Yan J, Xu C. Metall Mater Trans, 2008; 39A: 119

[18] Motoyama M, Fukunaka Y, Sakka T, Ogata Y H. J Electrochem Soc, 2006; 153: C502

[19] Lucadamo G, Medlin D L, Yang N Y C, Kelly J J, Talin A A. Philos Mag, 2005; 85: 2549

[20] El.Sherik A M, Erb U. J Mater Sci, 1995; 30: 5743

[21] Saitou M, Oshiro S, Asadul H S M. J Appl Electrochem, 2008; 38: 309

[22] Bicelli L P, Bozzini B, Mele C, D乫Urzo L. Int J Electrochem Sci, 2008; 3: 356

[23] Fleischmann M, Thirsk H R. Electrochim Acta, 1959; 1: 146

[24] Boubatra M, Azizi A, Schmerber G, Dinia A. Ionics, 2012; 15: 425

[25] Boubatra M, Azizi A, Schmerber G, Dinia A. J Mater Sci.Mater Electron, 2011; 22: 1804

[26] Swygenhoven H V, Derlet P M, Fr冇seth A G. Nat Mater, 2004; 3: 399

[27] Idrissi H, Wang B, Colla M S, Raskin J P, Schryvers D, Pardoen T. Adv Mater, 2011; 23: 2119

[28] Zhu T, Gao H. Scr Mater, 2012; 66: 843

[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[11] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[12] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[13] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[14] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[15] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
No Suggested Reading articles found!