Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (11): 1335-1341    DOI: 10.3724/SP.J.1037.2012.00232
Current Issue | Archive | Adv Search |
EFFECTS OF Ti AND Al CONTENTS ON THE PRECIPITATION BEHAVIOR OF η PHASE IN Fe-Ni BASE ALLOYS
CHEN Shenghu, ZHAO Mingjiu, RONG Lijian
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

CHEN Shenghu ZHAO Mingjiu RONG Lijian. EFFECTS OF Ti AND Al CONTENTS ON THE PRECIPITATION BEHAVIOR OF η PHASE IN Fe-Ni BASE ALLOYS. Acta Metall Sin, 2012, 48(11): 1335-1341.

Download:  PDF(781KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Fe-Ni base austenitic alloys have been widely used as structural materials in the hydrogen environment, which is strengthened by the precipitation of γ' [Ni3(Al, Ti)]. η phase is present after solution treatment in some modified alloys, which is detrimental to hydrogen resistance performance of alloys. In order to eliminate the $\eta$ phase and optimize the alloy composition, the precipitation behavior of η phase in Fe-Ni base alloys with different Ti and Al contents was investigated in the range of 900 ℃ to 1030 ℃ using OM, SEM, TEM and EPMA. The results show that the formation ability of η phase is related to the content of Ti and Al. Increasing the (Ti+Al) content or the Ti/Al ratio in the alloys promotes the precipitation of η phase. Moreover, the η phase does not exist in alloys with the lower (Ti +Al) content or Ti/Al ratio, but still presents in the alloys with higher (Ti+Al) content and Ti/Al ratio after the standard solution treatment at 980 ℃, which is due to that the η phase precipitates at the expense of the γ' phase existing at higher temperature. In situ microstructure observations indicate that η phase and elemental segregation can be eliminated by the optimization of solution treatment condition.

Key words:  Fe-Ni base alloy      η phase      solution treatment      precipitation behavior     
Received:  26 April 2012     
Fund: 

Supported by National Natural Science Foundation of China (Nos.51171178 and u1230118)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00232     OR     https://www.ams.org.cn/EN/Y2012/V48/I11/1335

[1] Cicco H D, Luppo M I, Gribaudo L M, Garcia J O. Mater Charact, 2004; 52: 85

[2] Thompson A W. Metall Trans, 1976; 7A: 315

[3] Tan Y, Yu Y, Pan X X, Li G D, Zhang F J, Feng J, Zhou D H, Rong L J, Ma L M. Acta Metall Sin, 2002; 38: 684

(谭 云, 余勇, 潘晓霞, 李东光, 张方举, 丰杰, 周德惠, 戎利建, 马禄铭. 金属学报, 2002; 38: 684)

[4] Rho B S, Nam S W. Mater Lett, 2001; 48: 49

[5] Li X Y, Zhang J, Rong L J, Li Y Y. J Mater Sci Eng, 2005; 23: 484

(李秀艳, 张建, 戎利建, 李依依. 材料科学与工程学报, 2005; 23: 484)

[6] Zhang J, Li X Y, Rong L J, Zheng Y N, Zhu S Y. Acta Metall Sin, 2006; 42: 469

(张建, 李秀艳, 戎利建, 郑勇男, 朱升云. 金属学报, 2006; 42: 469)

[7] Thompson AW, Brooks J A. Metall Trans, 1975; 6A: 1431

[8] Rho B S, Hong H U, Nam S W. Scr Mater, 2000; 43: 167

[9] Brooks J A, Thompson A W. Metall Trans, 1993; 24A: 1983

[10] Zhao M J, Rong L J. Acta Metall Sin, 2009; 45: 167

(赵明久, 戎利建. 金属学报, 2009; 45: 167)

[11] Zhao M J, Guo Z F, Rong L J. Mater Sci Eng, 2010; A527: 5844

[12] Guo Z F, Liang H, Zhao M J, Rong L J. Mater Sci Eng, 2010; A527: 6620

[13] Asgari S. Metall Trans, 2006; 37A: 2051

[14] Wan W J, Han G W, Deng P. J Iron Steel Res Int, 2010; 17: 64

[15] Li X Y, Zhang J, Rong L J, Li Y Y. Chin J Mater Res, 2006; 20: 113

(李秀艳, 张 建, 戎利建, 李依依. 材料研究学报, 2006; 20: 113)

[16] Li X Y, Zhang J, Rong L J, Li Y Y. Mater Sci Eng, 2008; A488: 547

[17] Brooks J A, West A J, Thompson A W. Metall Trans, 1983; 14A: 75

[18] Nakkalil R, Richards N L, Chaturvedi M C. Scr Mater, 1992; 26: 545

[19] Min Z X, Shen J, Feng Z R, Wang L S, Liu L, Fu H Z. Acta Metall Sin, 2010; 46: 1543

(闵志先, 沈 军, 冯周荣, 王灵水, 刘林, 傅恒志. 金属学报, 2010; 46: 1543)

[20] Guo S R, Lu D Z. Acta Metall Sin, 1991; 27: 421

(郭守仁, 卢德忠. 金属学报, 1991; 27: 421)

[21] Headley T J, Karnowsky M M, Sorenson W R. Metall Trans, 1982; 13A: 345

[22] Ansara I, Dupin N, Lukas H L, Sundman B. J Alloys Compd, 1997; 247: 20

[23] Du Y, Clavaguera N. J Alloys Compd, 1996; 20: 32

[24] Guo J T. Material Science and Engineering for Superalloys. Beijing: Science Press, 2008: 123

(郭建亭. 高温合金材料学. 北京: 科学出版社, 2008: 123)

[25] Maniar G N, Jr Bridge J E. Metall Trans, 1971; 2: 95

[26] Maniar G N, Jr Bridge J E, James H M. Metall Trans, 1971; 2: 1484

[1] GONG Xiangpeng, WU Cuilan, LUO Shifang, SHEN Ruohan, YAN Jun. Effect of Natural Aging on Artificial Aging of an Al-2.95Cu-1.55Li-0.57Mg-0.18Zr Alloy at 160oC[J]. 金属学报, 2023, 59(11): 1428-1438.
[2] MA Dexin, ZHAO Yunxing, XU Weitai, PI Libo, LI Zhongxing. Surface Effect on Eutectic Structure Distribution in Single Crystal Superalloy Castings[J]. 金属学报, 2021, 57(12): 1539-1548.
[3] CAO Tieshan, ZHAO Jinyi, CHENG Congqian, MENG Xianming, ZHAO Jie. Effect of Cold Deformation and Solid Solution Temperature on σ-phase Precipitation Behavior in HR3C Heat Resistant Steel[J]. 金属学报, 2020, 56(5): 673-682.
[4] Lin WEI,Zhijun WANG,Qingfeng WU,Xuliang SHANG,Junjie LI,Jincheng WANG. Effect of Mo Element and Heat Treatment on Corrosion Resistance of Ni2CrFeMox High-Entropy Alloyin NaCl Solution[J]. 金属学报, 2019, 55(7): 840-848.
[5] Yuanyuan SONG, Mingjiu ZHAO, Lijian RONG. Study on the Precipitation of γ' in a Fe-Ni Base Alloy During Ageing by APT[J]. 金属学报, 2018, 54(9): 1236-1244.
[6] Shenghu CHEN, Lijian RONG. Microstructure Evolution During Solution Treatment and Its Effects on the Properties of Ni-Fe-Cr Alloy[J]. 金属学报, 2018, 54(3): 385-392.
[7] Fengming QIN, Yajie LI, Xiaodong ZHAO, Wenwu HE, Huiqin CHEN. Effect of Nitrogen Content on Precipitation Behavior and Mechanical Properties of Mn18Cr18NAustenitic Stainless Steel[J]. 金属学报, 2018, 54(1): 55-64.
[8] Hongwei ZHANG,Xuezhi QIN,Xiaowu LI,Lanzhang ZHOU. Incipient Melting Behavior and Its Influences on the Mechanical Properties of a Directionally Solidified Ni-Based Superalloy with High Boron Content[J]. 金属学报, 2017, 53(6): 684-694.
[9] Yutian DING,Yubi GAO,Zhengyi DOU,Xin GAO,Dexue LIU,Zhi JIA. Precipitation Behavior of δ Phase of Deformation Induced GH3625 Superalloy Hot-Extruded Tube[J]. 金属学报, 2017, 53(6): 695-702.
[10] Xiaosong ZHANG,Yong XU,Shihong ZHANG,Ming CHENG,Yonghao ZHAO,Qiaosheng TANG,Yuexia DING. Research on the Collaborative Effect of Plastic Deformation and Solution Treatment in the Intergranular Corrosion Property of Austenite Stainless Steel[J]. 金属学报, 2017, 53(3): 335-344.
[11] Bo HE,Qingwu NIE,Hongyu Zhang,Hua WEI. EFFECTS OF SOLUTION TREATMENT ON MICRO-STRUCTURE AND WEAR-RESISTANT PROPERTIES OF CoCrW ALLOYS[J]. 金属学报, 2016, 52(4): 484-490.
[12] Xiaohong YOU,Ganggang WANG,Jun WANG,Tao XU,Hongyu ZHANG,Hua WEI. EFFECT OF SOLID SOLUTION TREATMENT ONMICROSTRUCTURE AND MECHANICALPROPERTIES OF HOT-PRESS CoCrW ALLOYS[J]. 金属学报, 2016, 52(2): 161-167.
[13] Yulai CHEN,Zhaoyin LUO,Jingyuan LI. EFFECT OF SOLUTION TEMPERATURE ON MICRO- STRUCTURE AND PITTING CORROSION RESISTANCE OF S32760 DUPLEX STAINLESS STEEL[J]. 金属学报, 2015, 51(9): 1085-1091.
[14] YANG Fuqiang, SONG Renbo, SUN Ting, ZHANG Leifeng, ZHAO Chao, LIAO Baoxin. MICROSTRUCTURE AND MECHANICAL PROPER- TIES OF Fe-Mn-Al LIGHT-WEIGHT HIGH STRENGTH STEEL[J]. 金属学报, 2014, 50(8): 897-904.
[15] HE Hong, LI Jingyuan, QIN Liyan, WANG Yide, FANG Fei. MICROSTRUCTURES AND PROPERTIES OF 0Cr32Ni7Mo4N DUPLEX STAINLESS STEEL AFTER VARIOUS FORMING PROCESSES[J]. 金属学报, 2014, 50(1): 1-10.
No Suggested Reading articles found!