Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (3): 307-314    DOI: 10.3724/SP.J.1037.2011.00699
论文 Current Issue | Archive | Adv Search |
INFLUENCE OF COLUMNAR GRAINS ON THE RECRYSTALLIZATION TEXTURE EVOLUTION IN Fe-3%Si ELECTRICAL STEEL
ZHANG Ning, YANG Ping, MAO Weimin
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

ZHANG Ning YANG Ping MAO Weimin. INFLUENCE OF COLUMNAR GRAINS ON THE RECRYSTALLIZATION TEXTURE EVOLUTION IN Fe-3%Si ELECTRICAL STEEL. Acta Metall Sin, 2012, 48(3): 307-314.

Download:  PDF(6566KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Columnar grains commonly exist in the cast slabs of Fe-3%Si electrical steels and exert, due to their topographic and crystallographic anisotropies, strong influence on the microstructure and texture during following hot-rolling, cold-rolling and annealing. Based on the previous paper addressing the cold-rolling texture evolution in the electrical steels with different alignments of columnar grains, this work illustrates further the recrystallization texture evolution at different annealing temperatures by means of XRD and EBSD techniques. The results show that the recrystallization texture evolution represents, on the one hand, the ‘heritage’ of the initial orientations, concerning the formation of cube and Goss texture. On the other hand, specific features are determined from different types of recrystallized columnar grains specimens, namely, the formation of the {113} texture, the more significant growth of Goss grains than that of cube grains in RD specimens (with initial columnar grains' longitudinal axis being along rolling direction) and the vanishing of {110}<110> grains in TD specimens, which have been scarcely reported in single crystals or in polycrystalline bcc materials composed of equiaxed grains. The dissimilar recrystallization environments lead to distinct evolution of cube texture at various annealing temperature, and the highest intensity of cube texture at low annealing temperature in TD specimen is believed to be related with the strong effect of transverse directional alignments of columnar grain boundaries. Regarding the cube and Goss recrystallization textures, their formation can be explained in terms of the theories of both oriented nucleation and oriented growth. In addition, this study also confirms that {111} texture can be suppressed effectively in the columnar grain specimens after cold--rolling at intermediate reduction and annealing.
Key words:  electrical steel      columnar grain      texture      recrystallization     
Received:  10 November 2011     
Fund: 

Supported by National Natural Science Foundation of China (No.51071024)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00699     OR     https://www.ams.org.cn/EN/Y2012/V48/I3/307

[1] Tomida T, Tanaka T. ISIJ Int, 1995; 35: 548

[2] Kovac F, Dzubinsky M, Sidor Y. J Magn Magn Mater, 2004; 269: 333

[3] Gutierrez–Castaneda E J, Salinas–Rodriguez A. J Magn Magn Mater, 2011; 323: 2524

[4] Kurz W, Fisher D J. Acta Metall, 1981; 29: 11

[5] Kovac F, Stoyka V, Petryshynets I. J Magn Magn Mater, 2008; 320: 627

[6] Takashima M, Komatsubara M, Morito N. ISIJ Int, 1997; 37: 1263

[7] Walter J L, Koch E F. Acta Metall, 1962; 10: 1059

[8] Abe H, Matsuo M, Ito K. Trans JIM, 1962; 26: 684

[9] Koh P K, Dunn C G. Trans AIME, 1955; 203: 401

[10] Dunn C G. Acta Metall, 1954; 2: 173

[11] Walter J L, Hibbard W R. Trans Metall Soc AIME, 1958; 212: 731

[12] Dorner D, Zaefferer S, Lahn L, Raabe D. J Magn Magn Mater, 2006; 304: 183

[13] Inagaki H, Suda T. Texture, 1972; 1: 129

[14] Tsuji N, Tsuzaki K, Maki T. ISIJ Int, 1993; 33: 783

[15] Tsuji N, Tsuzaki K, Maki T. ISIJ Int, 1994; 34: 1008

[16] Park J T, Szpunar J A. Acta Mater, 2003; 51: 3037

[17] Samajdar I, Cicale S, Verlinden B, Van Houtte P, Abbruzzesse G. Scr Mater, 1998; 39: 1083

[18] Ushioda K, Hutchinson W B. ISIJ Int, 1989; 29: 862

[19] Haratani T, Hutchinson W B, Dillamore I L, Bate P. Metall Sci, 1984; 18: 57

[20] Stojakovic D, Doherty R D, Kalidindi S R, Landgraf F J G. Metall Mater Trans, 2008; 39A: 1738

[21] Verbeken K, Gomes E, Schneider J, Houbaert Y. J Solid State Phenom, 2010; 160: 189

[22] Wenk H R, Van Houtte P. Rep Prog Phys, 2004; 67: 1367

[23] Dillamore I L, Morris P L, Smith C J E, Hutchinson W B. Proc Roy Soc Lond, 1972; 329A: 405

[24] Dunn C G, Walter J L. Trans Metall Soc AIME, 1962; 224: 518

[25] Walker E V, Howard J. Trans Metall Soc AIME, 1962; 224: 876
[1] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[3] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[4] LI Min, WANG Jijie, LI Haoze, XING Weiwei, LIU Dezhuang, LI Aodi, MA Yingche. Effect of Y on the Solidification Microstructure, Warm Compression Behavior, and Softening Mechanism of Non-Oriented 6.5%Si Electrical Steel[J]. 金属学报, 2023, 59(3): 399-412.
[5] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[6] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[7] LI Min, LI Haoze, WANG Jijie, MA Yingche, LIU Kui. Effect of Ce on the Microstructure, High-Temperature Tensile Properties, and Fracture Mode of Strip Casting Non-Oriented 6.5%Si Electrical Steel[J]. 金属学报, 2022, 58(5): 637-648.
[8] REN Shaofei, ZHANG Jianyang, ZHANG Xinfang, SUN Mingyue, XU Bin, CUI Chuanyong. Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism[J]. 金属学报, 2022, 58(2): 129-140.
[9] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[10] HU Chen, PAN Shuai, HUANG Mingxin. Strong and Tough Heterogeneous TWIP Steel Fabricated by Warm Rolling[J]. 金属学报, 2022, 58(11): 1519-1526.
[11] YANG Ping, WANG Jinhua, MA Dandan, PANG Shufang, CUI Feng'e. Influences of Composition on the Transformation-Controlled {100} Textures in High Silicon Electrical Steels Prepared by Mn-Removal Vacuum Annealing[J]. 金属学报, 2022, 58(10): 1261-1270.
[12] DING Ning, WANG Yunfeng, LIU Ke, ZHU Xunming, LI Shubo, DU Wenbo. Microstructure, Texture, and Mechanical Properties of Mg-8Gd-1Er-0.5Zr Alloy by Multi-Directional Forging at High Strain Rate[J]. 金属学报, 2021, 57(8): 1000-1008.
[13] YAN Mengqi, CHEN Liquan, YANG Ping, HUANG Lijun, TONG Jianbo, LI Huanfeng, GUO Pengda. Effect of Hot Deformation Parameters on the Evolution of Microstructure and Texture of β Phase in TC18 Titanium Alloy[J]. 金属学报, 2021, 57(7): 880-890.
[14] JIANG Jufu, ZHANG Yihao, LIU Yingze, WANG Ying, XIAO Guanfei, ZHANG Ying. Research on AlSi7Mg Alloy Semi-Solid Billet Fabricated by RAP[J]. 金属学报, 2021, 57(6): 703-716.
[15] LI Yanmo, GUO Xiaohui, CHEN Bin, LI Peiyue, GUO Qianying, DING Ran, YU Liming, SU Yu, LI Wenya. Microstructure and Mechanical Properties of Linear Friction Welding Joint of GH4169 Alloy/S31042 Steel[J]. 金属学报, 2021, 57(3): 363-374.
No Suggested Reading articles found!