Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (3): 315-320    DOI:
论文 Current Issue | Archive | Adv Search |
EFFECTS OF SAMPLE DIRECTIONS ON DYNAMIC FORCED SHEAR DEFORMATION BEHAVIORS OF COLD-ROLL Cu SHEET
CHEN Zhiyong, TANG Lin, ZHAN Congkun, YANG Xuyue
School of Materials Science and Engineering, Central South University, Changsha 410083
Cite this article: 

CHEN Zhiyong TANG Lin ZHAN Congkun YANG Xuyue. EFFECTS OF SAMPLE DIRECTIONS ON DYNAMIC FORCED SHEAR DEFORMATION BEHAVIORS OF COLD-ROLL Cu SHEET. Acta Metall Sin, 2012, 48(3): 315-320.

Download:  PDF(2649KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  分别沿与冷轧Cu板轧向成0o (RD-0o), 45o (RD-45o)和90o(RD--90o)方向取帽形试样, 利用Split-Hopkinson压杆实验装置, 研究了强迫剪切条件下冷轧Cu板的动态变形特征. 结果表明: 冷轧Cu板强迫剪切动态力学行为呈现出明显的各向异性, RD--90$^{\circ}$方向屈服强度和峰值应力最大, RD-45o其次, RD-0o方向最小. 不同方向的绝热剪切变形行为也表现出较大的差异, RD-0o方向的绝热剪切带内的变形相比其它2个方向均匀, 绝热剪切敏感性最弱. 基于剪切应力--剪切应变曲线和绝热剪切扩展所需能量, 定性解释了不同方向绝热剪切敏感性的差异. EBSD的实验观察表明, 3个方向上的剪切带内均有超细晶存在. 基于亚晶旋转动态再结晶机制, 理论计算结果证实了剪切带内发生再结晶的动力学可行性.
Key words:  冷轧Cu板      动态强迫剪切      各向异性      织构      亚晶旋转动态再结晶     
Received:  19 August 2011     
Fund: 

Supported by National Natural Science Foundation of China (No.50871125) and Science and TechnologyFoundation of Central South University (No.2010QZZD014)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2012/V48/I3/315

[1] Andrade U R, Meyers M A, Chokshi A H. Scr Metall Mater, 1994; 30: 933

[2] Sanchez J C, Murr L E, Staudhammer K P. Acta Mater, 1997; 45: 3223

[3] Kiritani M, Satoh Y, Kizuka Y, Arakawa K, Ogasawara Y, Arai S, Shimomura Y. Philos Mag Lett, 1999; 79: 797

[4] Jia D, Ramesh K T, Ma E, Lu L, Lu K. Scr Mater, 2001; 45: 613

[5] Stevenson M E, Jones S E, Bradt R C. Mater Sci Res Int, 2003; 9: 187

[6] Gourdin W H, Lassila D H. Acta Metall Mater, 1991; 39: 2337

[7] Gourdin W H, Lassila D H. Mater Sci Eng, 1992; A151: 11

[8] Meyers M A, Andrade U R, Chokshi A R. Metall Mater Trans, 1995; 26A: 2881

[9] Nemat–Nasser S, Li Y L. Acta Mater, 1998; 46: 565

[10] Andrade U R, Meyers M A, Chokshi A H. Acta Metall Mater, 1994; 42: 3183

[11] Edington J W. Philos Mag, 1969; 19: 1189

[12] Rashid M M, Gray G T III, Nemat–Nasser S. Philos Mag, 1992; A65: 707

[13] Li S X, Yang R Q, Li J W, Zhang Z F. Philos Mag, 2006; 86: 5769

[14] Yang R Q, Li S X, Li G Y, Zhang Z F. Acta Metall Sin, 2006; 42: 245

(杨瑞青, 李守新, 李广义, 张哲峰. 金属学报, 2006; 42: 245)

[15] Chen Z Y, Cai H N, Wang F C, Tan C W, Zhan C K, Liu C M. Acta Metall Sin, 2009; 45: 143

(陈志永, 才鸿年, 王富耻, 谭成文, 詹从堃, 刘楚明. 金属学报, 2009; 45: 143)

[16] Wang L L. Foundation of Stress Waves. Beijing: National Defense Industry Press, 2005: 52

(王礼立. 应力波基础. 北京: 国防工业出版社, 2005: 52)

[17] Armstrong R W, Walley S M. Int Mater Rev, 2008; 53: 105

[18] Bunge H J. Texture Analysis in Materials Science–Mathematical Methods. London: Butterworths, 1982: 70

[19] Grady D E. J Mech Phys Sol, 1992; 40: 1197

[20] Hines J A, Vecchio K S. Acta Mater, 1997; 45: 635

[21] Nesterenko V F, Meyers M A, LaSalvia J C, Bondar M P, Chen Y J, Lukyanov Y L. Mater Sci Eng, 1997; A229: 23

[22] Meyers M A, Nesterenko V F, LaSalvia J C, Xue Q. Mater Sci Eng, 2001; A317: 204
No related articles found!
No Suggested Reading articles found!