Please wait a minute...
Acta Metall Sin  2021, Vol. 57 Issue (6): 703-716    DOI: 10.11900/0412.1961.2020.00254
Research paper Current Issue | Archive | Adv Search |
Research on AlSi7Mg Alloy Semi-Solid Billet Fabricated by RAP
JIANG Jufu1(), ZHANG Yihao1, LIU Yingze1, WANG Ying2, XIAO Guanfei1, ZHANG Ying1
1.School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
2.School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
Cite this article: 

JIANG Jufu, ZHANG Yihao, LIU Yingze, WANG Ying, XIAO Guanfei, ZHANG Ying. Research on AlSi7Mg Alloy Semi-Solid Billet Fabricated by RAP. Acta Metall Sin, 2021, 57(6): 703-716.

Download:  HTML  PDF(46624KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Semi-solid metal processing is a metal-forming technology that combines the advantages of casting and forging, realizing near-net forming high-performance parts with complex structures. Research on semi-solid processing of AlSi7Mg alloys mainly focuses on rheology, and the preparation of high solid fraction AlSi7Mg semi-solid billets by the solid phase method has been largely neglected. In fact, semi-solid technology is more significant than casting at higher solid fractions. The present study investigates semi-solid billets of AlSi7Mg aluminum alloy with a high solid fraction, prepared by the recrystallization and partial re-melting (RAP) method. The effects of upsetting temperature, compression ratio, semi-solid isothermal treatment temperature, and holding time on the billet microstructure were investigated by DSC test, upsetting experiment, semi-solid isothermal treatment experiment, OM observations, and Image Pro Plus image processing software. The microstructure of the semi-solid billet during isothermal compression was slightly affected by temperature but was beneficially refined by increasing the compression ratio. The optimal hot upsetting parameters were 240oC and 40% deformation. During the semi-solid isothermal treatment, increasing the holding temperature gradually increased the size of the solid phase grains in the microstructure. As the holding time increased, the solid phase particles in the semi-solid structure initially grew slowly, and thereafter rapidly grew to a stable size. The changes in roundness of the solid particles were more complicated. The average grain size of the billet prepared by the RAP method was 64~117 μm, and the shape factor was 0.76~0.89. The linear relationship between cubic coarsening of the average semi-solid grain size and isothermal time was nonobvious at isothermal temperatures below 599oC but was evident at temperatures of 599oC. Below 599oC, the grain coarsening is affected by Ostwald ripening, coalescence, recrystallization, and melting; while at 599oC, the grain coarsening was dominated by Ostwald ripening.

Key words:  synthesizing and processing technics for material      semi-solid billet      recrystallization and remelting      microstructure      AlSi7Mg     
Received:  13 July 2020     
ZTFLH:  TG249.9  
Fund: National Key Research and Development Program of China(2019YFB2006500);National Natural Science Foundation of China(51875124)
About author:  JIANG Jufu, professor, Tel: 18746013176, E-mail: jiangjufu@hit.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00254     OR     https://www.ams.org.cn/EN/Y2021/V57/I6/703

ElementSiMgTiFeMnCuZnAl
Standard6.5-7.50.25-0.45≤ 0.2≤ 0.12≤ 0.05≤ 0.2≤ 0.3Bal.
Sample6.9300.4900.0540.0200.0330.0110.043Bal.
Table 1  Chemical composition of AlSi7Mg aluminum alloy
Fig.1  DSC curve of AlSi7Mg aluminum alloy (a) and its liquid phase ratio-temperature curve (b)
Fig.2  Upset samples under different deformations of AlSi7Mg aluminum alloy
Fig.3  The influence of different deformation temp-eratures and deformation amounts on AlSi7Mg aluminum alloy semi-solid billet
Fig.4  OM images of microstructures with different deformation temperatures at 40% deformation of AlSi7Mg aluminum alloy semi-solid billet (isothermal temperature T = 599oC, isothermal time t = 11 min)
Fig.5  OM images of microstructures with different deformation temperatures at 30% deformation of AlSi7Mg aluminum alloy semi-solid billet (T = 599oC, t = 11 min)
Fig.6  OM images of microstructures with different deformation temperatures at 20% deformation of AlSi7Mg aluminum alloy semi-solid billet (T = 599oC, t = 11 min)
Fig.7  OM images of microstructures of AlSi7Mg aluminum alloy semi-solid billet at different isothermal time (T = 581oC)
Fig.8  OM images of microstructures of AlSi7Mg aluminum alloy semi-solid billet at different isothermal time (T = 584oC)
Fig.9  OM images of microstructures of AlSi7Mg aluminum alloy at different isothermal time (T = 588oC)
Fig.10  OM images of microstructures of AlSi7Mg aluminum alloy at different isothermal time (T = 593oC)
Fig.11  OM images of microstructures of AlSi7Mg aluminum alloy at different isothermal time (T = 599oC)
Fig.12  Scatter diagram and linear fitting diagram of D3 with isothermal time (K—coarsening rate of solid grain, R2—coefficient of determination )
Fig.13  D (a) and f (b) with isothermal temperatures in different isothermal time groups
Fig.14  D and f with different isothermal temperatures at isothermal time of 11 min
Fig.15  Comparison of microstructures of AlSi7Mg aluminum alloy semi-solid billets prepared by different methods (RAP—recrystallization and partial remeltling, MHD—magnetohydrodynamic, MITP—melt isothermal treatment process)
1 Bai J Y. Application of aluminum alloy material and its forming technology [J]. World Nonferrous Met., 2017, (14): 272
白嘉远. 铝合金材料的应用及其加工成形技术 [J]. 世界有色金属, 2017, (14): 272
2 Pan F S, Zhang D F, et al. Aluminum Alloy and Application [M]. Beijing: Chemical Industry Press, 2006: 341
潘复生, 张丁非等. 铝合金及应用 [M]. 北京: 化学工业出版社, 2006: 341
3 Li J. Lightweight commercial vehicle and application of aluminum alloy in modern automobile production [J]. Autom. Appl. Technol., 2020, (1): 178
李 剑. 商用汽车轻量化及铝合金在现代汽车生产中的应用 [J]. 汽车实用技术, 2020, (1): 178
4 Xie G N. Effective application of aluminum alloy in marine and marine engineering [J]. Mar. Equip./Mater. Mark., 2019, (1): 49
谢光能. 铝合金在船舶和海洋工程中的有效应用 [J]. 船舶物资与市场, 2019, (1): 49
5 Zhang Y. Application of aluminum alloy to aerospace industry [J]. Alum. Fabr., 2009, (3): 50
张 钰. 铝合金在航天航空中的应用 [J]. 铝加工, 2009, (3): 50
6 Zhu L. Preparation and thixoforming of A356 alloy semi-solid billet [D]. Harbin: Harbin Institute of Technology, 2019
朱 亮. A356铝合金半固态坯制备及触变成形工艺研究 [D]. 哈尔滨: 哈尔滨工业大学, 2019
7 Zeng L. Research on fabricating and thixoforming of semisolid billet via semisolid isothermal treatment of hot rolled 2A12 aluminum alloy [D]. Harbin: Harbin Institute of Technology, 2018
曾 力. 热轧态2A12铝合金半固态等温处理制坯及触变成形研究 [D]. 哈尔滨: 哈尔滨工业大学, 2018
8 Chen G. Research on thixoforming and defect controlling of high performance wrought aluminum alloys [D]. Harbin: Harbin Institute of Technology, 2013
陈 刚. 高强变形铝合金触变成形及缺陷控制研究 [D]. 哈尔滨: 哈尔滨工业大学, 2013
9 Koç M, Vazquez V, Witulski T, et al. Application of the finite element method to predict material flow and defects in the semi-solid forging of A356 aluminum alloys [J]. J. Mater. Process. Technol., 1996, 59: 106
10 Spencer D B. Rheology of liquid-solid mixtures of lead-tin [D]. Cambridge, MA, USA: Massachusetts Institute of Technology, 1971
11 Spencer D B, Mehrabian R, Flemings M C. Rheological behavior of Sn-15 pct Pb in the crystallization range [J]. Met. Mater. Trans., 1972, 3B: 1925
12 Luo S J, Jiang J F, Du Z M. New research development, industrial application and some thinking of semi-solid metal forming [J]. Chin. J. Mech. Eng., 2003, 39(11): 52
罗守靖, 姜巨福, 杜之明. 半固态金属成形研究的新进展、工业应用及其思考 [J]. 机械工程学报, 2003, 39(11): 52
13 Chen G. Research on inhomogeneity of microstructure and mechanical properties for 2A50 aluminum alloy prepared by thixoforging [D]. Harbin: Harbin Institute of Technology, 2009
陈 刚. 2A50铝合金半固态模锻成形的组织性能不均匀性研究 [D]. 哈尔滨: 哈尔滨工业大学, 2009
14 Gao J Z. Microstructure and properties of A201 aluminum alloy with high solid faction semisolid die-casting process [D]. Beijing: University of Science and Technology Beijing, 2019
郜俊震. A201铝合金高固相分数半固态压铸行为与组织性能研究 [D]. 北京: 北京科技大学, 2019
15 Pan S, Li Q, Yu B Y, et al. Research progress of Mg alloy semisolid forming [J]. Rare Met. Mater. Eng., 2019, 48: 2379
潘 帅, 李 强, 于宝义等. 镁合金半固态研究进展 [J]. 稀有金属材料与工程, 2019, 48: 2379
16 Luo X Q, Li Z Y, Yan Q Z. The research progress of semi-solid metal forming technology [J]. New Technol. New Process, 2015, (6): 135
罗晓强, 李正阳, 燕青芝. 半固态金属成形技术的研究进展 [J]. 新技术新工艺, 2015, (6): 135
17 Zhang S G. Study on technology of the rheo-squeeze casting process for aluminum alloys [D]. Nanchang: Nanchang University, 2018
张树国. 铝合金流变挤压铸造成形技术基础研究 [D]. 南昌: 南昌大学, 2018
18 Yu Z T, Zhang H H, Shao G J, et al. Study of solid content in aluminum alloys reheated to semisolid state by DSC [J]. Phys. Exam. Test., 2002, (1): 22
余忠土, 张恒华, 邵光杰等. 半固态铝合金中固相分数差热扫描法的研究 [J]. 物理测试, 2002, (1): 22
19 Cheng S J. Study on semi-solid ZL101 aluminum alloy preparation and squeeze casting process [D]. Taiyuan: North University of China, 2016
程书建. 半固态ZL101铝合金制备及挤压铸造工艺研究 [D]. 太原: 中北大学, 2016
20 Jiang J F, Liu Y Z, Xiao G F, et al. Effects of plastic deformation of solid phase on mechanical properties and microstructure of wrought 5A06 aluminum alloy in directly semisolid thixoforging [J]. J. Alloys Compd., 2020, 831: 154748
21 Liu Z, Chen Z P, Chen T. Effects of crucible size and electromagnetic frequency on flow during fabrication of semisolid A356 Al alloy slurry [J]. Acta Metall. Sin., 2018, 54: 435
刘 政, 陈志平, 陈 涛. 坩埚尺寸和电磁频率对半固态A356铝合金浆料流动的影响 [J]. 金属学报, 2018, 54: 435
22 Liu Z, Mao W M, Zhao Z D. Semi-solid A356 alloy slurry prepared by a new process [J]. Acta Metall. Sin., 2009, 45: 507
刘 政, 毛卫民, 赵振铎. 新工艺制备半固态A356铝合金浆料 [J]. 金属学报, 2009, 45: 507
23 Mao W M, Zhao A M, Cui C L, et al. Research on the continuous cast billets of semi-solid AlSi7Mg alloy and their microstructure formation [J]. Acta Metall. Sin., 2000, 36: 539
毛卫民, 赵爱民, 崔成林等. AlSi7Mg合金半固态连铸坯料和组织形成研究 [J]. 金属学报, 2000, 36: 539
24 Liu G J, Zhang K, Zhang Y Z, et al. Continuous production and research of semisolid AlSi7Mg alloy [J]. Acta Metall. Sin., 1999, 35: 141
刘国钧, 张 奎, 张永忠等. 半固态AlSi7Mg铝合金的连续制备实验与研究 [J]. 金属学报, 1999, 35: 141
25 Tian Z F, Zhang Z F, Xu J, et al. Effect of electromagnetic stirring on microstructures of AlSi7Mg alloys [J]. Hot Work. Technol., 2006, 35(9): 46
田战峰, 张志峰, 徐 骏等. 电磁搅拌对AlSi7Mg合金显微组织的影响 [J]. 热加工工艺, 2006, 35(9): 46
26 Dai G X. Study on preparation of AlSi7Mg alloy semi-solid billets by melt isothermal treatment process [D]. Hefei: Hefei University of Technology, 2006
戴光星. 熔体等温处理法制备AlSi7Mg合金半固态坯料的研究 [D]. 合肥: 合肥工业大学, 2006
27 Chen C P, Tsao C Y A. Semi-solid deformation of non-dendritic structures—I. Phenomenological behavior [J]. Acta Mater., 1997, 45: 1955
28 Tzimas E, Zavaliangos A. Mechanical behavior of alloys with equiaxed microstructure in the semisolid state at high solid content [J]. Acta Mater., 1999, 47: 517
29 Chen Q, Chen G, Ji X H, et al. Compound forming of 7075 aluminum alloy based on functional integration of plastic deformation and thixoformation [J]. J. Mater. Process. Technol., 2017, 246: 167
30 Kirkwood D H, Sellars C M, Eliasboyed L G. Thixotropic materials [P]. US Pat, 5037489, 1991
31 Kiuchi M, Kopp R. Mushy/semi-solid metal forming technology—Present and future [J]. CIRP Ann., 2002, 51: 653
32 Atkinson H V, Liu D. Coarsening rate of microstructure in semi-solid aluminium alloys [J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 1672
33 Fu J L, Wang S X, Wang K K. Influencing factors of the coarsening behaviors for 7075 aluminum alloy in the semi-solid state [J]. J. Mater. Sci., 2018, 53: 9790
34 Jiang J F, Wang Y, Xiao G F, et al. Comparison of microstructural evolution of 7075 aluminum alloy fabricated by SIMA and RAP [J]. J. Mater. Process. Technol., 2016, 238: 361
35 Zhang D Y, Dong H B, Atkinson H. What is the process window for semi-solid processing? [J]. Metall. Mater. Trans., 2016, 47A: 1
36 Wei B. Research no microstructure evolution and deformation behavior of 7075 aluminum alloy in high temperature solid and semi-solid state [D]. Harbin: Harbin Institute of Technology, 2015
魏 斌. 7075铝合金高温固态-半固态组织演变及变形行为研究 [D]. 哈尔滨: 哈尔滨工业大学, 2015
37 Xiao X Q. Research on preparation and thixoforming of semi-solid billet of 5A06 wrought aluminum alloy [D]. Harbin: Harbin Institute of Technology, 2018
肖信权. 5A06变形铝合金半固态坯料制备及其触变成形研究 [D]. 哈尔滨: 哈尔滨工业大学, 2018
38 Xia D. Microstructure evolution and formation mechanism of semi-solid 7075 aluminum alloys fabricated by plastic predeformation [D]. Chongqing: Chongqing University, 2015
夏 丹. 预变形法制备7075铝合金坯料的半固态微观组织演变规律及形成机制 [D]. 重庆: 重庆大学, 2015
39 Jiang J F, Wang Y, Atkinson H V. Microstructural coarsening of 7005 aluminum alloy semisolid billets with high solid fraction [J]. Mater. Charact., 2014, 90: 52
40 Tzimas E, Zavaliangos A. Evolution of near-equiaxed microstructure in the semisolid state [J]. Mater. Sci. Eng., 2000, A289: 228
41 Ma M Z. Research on microstructure evolution and mechanical behavior of 7075 aluminum alloy thixoforming at high solid fraction [D]. Ji'nan: Shandong University, 2018
马民壮. 7075铝合金高固相率触变成形的微观组织演变和力学行为研究 [D]. 济南: 山东大学, 2018
42 Jiang J F, Peng Q C, Shan W W, et al. Preparation of semi-solid AZ91D billets by new SIMA method [J]. Spec. Cast. Nonferrous Alloys, 2005, 25: 740
姜巨福, 彭秋才, 单巍巍等. 新SIMA法制备AZ91D半固态坯 [J]. 特种铸造及有色合金, 2005, 25: 740
43 Lifshitz I M, Slyozov V V. The kinetics of precipitation from supersaturated solid solutions [J]. J. Phys. Chem. Solids, 1961, 19: 35
44 Wagner C. Theory of the ageing of precipitates by redissolution (Ostwald maturing) [J]. Z. Elektrochem., 1961, 65: 581
45 Bolouri A, Shahmiri M, Kang C G. Coarsening of equiaxed microstructure in the semisolid state of aluminum 7075 alloy through SIMA processing [J]. J. Mater. Sci., 2012, 47: 3544
46 Wang Y F, Zhao S D, Zhao X Z, et al. Microstructural coarsening of 6061 aluminum alloy semi-solid billets prepared via recrystallization and partial melting [J]. J. Mech. Sci. Technol., 2017, 31: 3917
47 Chen Q, Luo S J, Zhao Z D. Microstructural evolution of previously deformed AZ91D magnesium alloy during partial remelting [J]. J. Alloys Compd., 2009, 477: 726
48 Chen T J, Hao Y, Sun J. Microstructural evolution of previously deformed ZA27 alloy during partial remelting [J]. Mater. Sci. Eng., 2002, A337: 73
49 Jiang J F, Xiao G F, Wang Y, et al. Microstructure evolution of wrought nickel based superalloy GH4037 in the semi-solid state [J]. Mater. Charact., 2018, 141: 229
50 Bolouri A, Shahmiri M, Kang C G. Study on the effects of the compression ratio and mushy zone heating on the thixotropic microstructure of AA 7075 aluminum alloy via SIMA process [J]. J. Alloys Compd., 2011, 509: 402
51 Wang S C, Li Y Y, Chen W P, et al. Novel partial remelting process and microstructure evolution of semi-solid 2024 alloy [J]. Rare Met. Mater. Eng., 2009, 38(suppl.): 192
王顺成, 李元元, 陈维平等. 半固态2024合金部分重熔新工艺与组织演变 [J]. 稀有金属材料与工程, 2009, 38(): 192
52 Hu H Q. Metal Solidification Principle [M]. 2nd Ed., Beijing: China Machine Press, 2012: 46
胡汉起. 金属凝固原理 [M]. 第2版. 北京: 机械工业出版社, 2012: 46
53 Sistaninia M, Phillion A B, Drezet J M, et al. Three-dimensional granular model of semi-solid metallic alloys undergoing solidification: Fluid flow and localization of feeding [J]. Acta Mater., 2012, 60: 3902
54 Wang Y, Liu G, Fan Z. Microstructural evolution of rheo-diecast AZ91D magnesium alloy during heat treatment [J]. Acta Mater., 2006, 54: 689
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[11] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[12] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[13] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[14] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[15] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
No Suggested Reading articles found!