Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (2): 129-140    DOI: 10.11900/0412.1961.2020.00493
Research paper Current Issue | Archive | Adv Search |
Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism
REN Shaofei1,2, ZHANG Jianyang2, ZHANG Xinfang1(), SUN Mingyue2,3(), XU Bin2,3, CUI Chuanyong4
1.School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
2.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.Key Laboratory of Nuclear Materials and Safety, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
4.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

REN Shaofei, ZHANG Jianyang, ZHANG Xinfang, SUN Mingyue, XU Bin, CUI Chuanyong. Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism. Acta Metall Sin, 2022, 58(2): 129-140.

Download:  HTML  PDF(4806KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Superalloys with excellent high-temperature resistance and oxidation resistance have been widely used in aviation and energy fields. The new Ni-Co base superalloy is considered a candidate for the next generation of turbine discs due to its higher performance of mechanical properties and microstructure stability at high temperatures. However, tungsten inert gas (TIG) welding, metal inert gas (MIG) welding, and other welding techniques are not suitable for welding the new Ni-Co base superalloy because the Al + Ti content of the alloy reaches 7.5%, while traditional welding techniques (electron beam welding, friction welding, and diffusion welding) also have some disadvantages. For example, friction welding has certain requirements on the shape of the sample, and it is not suitable for welding large-volume alloys. Diffusion welding requires a long heat retention period and a harmful precipitation phase exists at the interface. A new welding method is applied in this study to solve the problem of welding nickel-based superalloy, achieving a better bonding effect. The Gleeble 3500 thermal simulator was used to study the plastic deformation bonding of Ni-Co base superalloys in a temperature range of 1000-1200oC and a strain range of 5%-40% with a strain rate of 0.001 s-1. The recrystallization behavior of the interface was studied by OM, EBSD, and TEM, and the bonding mechanism of the interface was clarified. The results showed that the resistance to deformation of the alloy was low when the plastic deformation bonding was performed at 1150oC, and there was no risk of cracking of the alloy. Plastic deformation bonding experiments with different deformations had shown that the alloy can achieve complete bonding of the interface under the condition of 40% deformation, and its mechanical properties can reach the same level as the matrix. The tensile fracture analysis showed that the fracture profile of the 40% deformed joint was consistent with the base material, showing a ductile fracture pattern. The results of EBSD and TEM showed that the coarse grains near the interface were first refined during the plastic deformation. With the increase of deformation, the refined grain removed the original interface by the migration of the interfacial grain boundaries with the assistance of a continuous dynamics recrystallization process and ultimately led to the bonding of the interface.

Key words:  Ni-Co base superalloy      plastic deformation bonding      dynamic recrystallization     
Received:  07 December 2020     
ZTFLH:  TG406  
Fund: National Key Research and Development Program of China(2018YFA0702900);National Natural Science Foundation of China(51774265);National Science and Technology Major Project of China(2019ZX06004010);Program of CAS Interdisciplinary Innovation Team and Youth Innovation Promotion Association, CAS
About author:  ZHANG Xinfang, professor, Tel: (010)82375027, E-mail: xfzhang@ustb.edu.cnSUN Mingyue, professor, Tel: (024)83970108, E-mail: mysun@imr.ac.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00493     OR     https://www.ams.org.cn/EN/Y2022/V58/I2/129

Fig.1  Schematic representation of the experiment
Fig.2  OM images of microstructures of as-cast (a) and homogenized (b) Ni-Co base superalloy
Fig.3  OM images of microstructures at deformation temperatures of 1000oC (a), 1050oC (b), 1100oC (c), 1150oC (d), and 1200oC (e), and the true stress-strain curves (f) of the Ni-Co base superalloy at the strain rate of 0.001 s-1
Fig.4  OM images of microstructures at true strains of 5% (a), 10% (b), 20% (c), 30% (d), and 40% (e), and statistics of mean grain size (f) of the Ni-Co base superalloy at the deformation temperature of 1150℃
Fig.5  Tensile curves of the joints at room temperature under different deformations
Fig.6  Tensile fracture morphologies of base material (a, c) and joints (b, d) at different deformations of 20% (a, b) and 40% (c, d)
Fig.7  Inverse pole figure (IPF) maps (a, c, e, g, i) and local average misorientation (LAM) maps (b, d, f, h, j) of the interface microstructure under different deformations at 1150℃
Fig.8  Misorientation distributions of the interface microstructures under different deformations at 1150℃
Fig.9  TEM images of bulging of interfacial grain boundaries (a) and interfacial substructure (b) at a deformation temperature of 1150℃ and 20% deformation
Fig. 10  Interface bonding mechanism during plastic deformation bonding
1 Lin Y C , Wu X Y , Chen X M , et al . EBSD study of a hot deformed nickel-based superalloy [J]. J. Alloys Compd., 2005, 640: 101
2 Yang X W , Li W Y , Li J L , et al . Finite element modeling of the linear friction welding of GH4169 superalloy [J]. Mater. Des., 2015, 87: 215
3 Chen X M , Lin Y C , When D X , et al . Dynamic recrystallization behavior of a typical nickel-based superalloy during hot deformation [J]. Mater. Des., 2014, 57: 568
4 Qu J L , Xie J F , Bi Z N , et al . Hot deformation characteristics and dynamic recrystallization mechanism of GH4730 Ni-based superalloy [J]. J. Alloys Compd., 2019, 785: 918
5 Xiang X M , Jiang H , Dong J X , et al . As-cast microstructure characteristic and homogenization of a newly developed hard-deformed Ni-based superalloy GH4975 [J]. Acta Metall. Sin., 2020, 56: 988
向雪梅, 江 河, 董建新 等 . 难变形高温合金GH4975的铸态组织及均匀化 [J]. 金属学报, 2020, 56: 988
6 Zhang Y , Li X X , Wei K , et al . Hot Deformation characteristics of novel wrought superalloy GH4975 extruded rod used for 850oC turbine disc [J]. Acta Metall. Sin., 2020, 56: 1401
张 勇, 李鑫旭, 韦 康 等 . 850℃涡轮盘用新型变形高温合金GH4975挤压棒材热变形规律研究 [J]. 金属学报, 2020, 56: 1401
7 Bi Z N , Qin H L , Dong Z G , et al . Residual stress evolution and its mechanism during the manufacture of superalloy disk forgings [J]. Acta Metall. Sin., 2019, 55: 1160
毕中南, 秦海龙, 董志国 等 . 高温合金盘锻件制备过程残余应力的演化规律及机制 [J]. 金属学报, 2019, 55: 1160
8 Cui C Y , Gu Y F , Ping D H , et al . Microstructural evolution and mechanical properties of a Ni-based superalloy, TMW-4 [J]. Metall. Mater. Trans., 2009, 40A: 282
9 Cui C Y , Gu Y F , Yuan Y , et al . Enhanced mechanical properties in a new Ni-Co base superalloy by controlling microstructures [J]. Mater. Sci. Eng., 2011, A528 : 5465
10 Yuan Y , Gu Y F , Zhong Z H , et al . Creep mechanisms of a new Ni-Co-base disc superalloy at an intermediate temperature [J]. J. Microsc., 2012, 248: 34
11 Yuan Y , Gu Y F , Cui C Y , et al . A novel strategy for the design of advanced engineering alloys—Strengthening turbine disk superalloys via twinning structures [J]. Adv. Eng. Mater., 2011, 13: 296
12 Gu Y F , Cui C Y , Yuan Y , et al . Research progress in a high performance cast & wrought superalloy for turbine disc applications [J]. Acta Metall. Sin., 2015, 51: 1191
谷月峰, 崔传勇, 袁 勇 等 . 一种高性能航空涡轮盘用铸锻合金的研究进展 [J]. 金属学报, 2015, 51: 1191
13 Ye X , Hua X M , Wang M , et al . Controlling hot cracking in Ni-based Inconel-718 superalloy cast sheets during tungsten inert gas welding [J]. J. Mater. Process. Technol., 2015, 222: 381
14 Han K , Wang H Q , Shen L , et al . Analysis of cracks in the electron beam welded joint of K465 nickel-base superalloy [J]. Vacuum, 2018, 157: 21
15 Osoba L O , Ding R G , Ojo O A . Microstructural analysis of laser weld fusion zone in Haynes 282 superalloy [J]. Mater. Charact., 2012, 65: 93
16 Ravisankar B , Krishnamoorthi J , Ramakrishnan S S , et al . Diffusion bonding of SU 263 [J]. J. Mater. Process. Technol., 2009, 209: 2135
17 Sah I , Kim D , Lee H J , et al . The recovery of tensile ductility in diffusion-bonded Ni-base alloys by post-bond heat treatments [J]. Mater. Des., 2013, 47: 581
18 Zhang G , Chandel R S , Seow H P . Solid state diffusion bonding of Inconel 718 [J]. Sci. Technol. Weld. Joining., 2001, 6: 235
19 Xiong J T , Yuan L , Zhu Y , et al . Diffusion bonding of nickel-based superalloy GH4099 with pure nickel interlayer [J]. J. Mater. Sci., 2019, 54: 6552
20 Uday M B , Ahmad Fauzi M N , Zuhailawati H , et al . Advances in friction welding process: A review [J]. Sci. Technol. Weld. Joining, 2010, 15: 534
21 Xie B J , Sun M Y , Xu B , et al . Dissolution and evolution of interfacial oxides improving the mechanical properties of solid state bonding joints [J]. Mater. Des., 2018, 157: 437
22 Jiang H Y , Sun M Y , Wu M F , et al . Microstructure and properties of 7075 aluminum alloy hot compress bonding joint [J]. Heat Treat. Met., 2020, 45(2): 46
江海洋, 孙明月, 吴铭方 等 . 7075铝合金热变形连接接头的组织与性能 [J]. 金属热处理, 2020, 45(2): 46
23 Zhang J Y , Xu B , Tariq N H , et al . Microstructure evolutions and interfacial bonding behavior of Ni-based superalloys during solid state plastic deformation bonding [J]. J. Mater. Sci. Technol., 2020, 46: 1
24 Sun M Y , Xu B , Xie B J , et al . Research advances on homogenization manufacturing of heavy components by metal additive forging [J]. Chin. Sci. Bull., 2020, 65: 3043
孙明月, 徐 斌, 谢碧君 等 . 大锻件均质化构筑成形研究进展 [J]. 科学通报, 2020, 65: 3043
25 Zhou L Y , Feng S B , Sun M Y , et al . Interfacial microstructure evolution and bonding mechanisms of 14YWT alloys produced by hot compression bonding [J]. J. Mater. Sci. Technol., 2019, 35: 1671
26 Zhang J Y , Sun M Y , Xu B , et al . Evolution of the interfacial microstructure during the plastic deformation bonding of copper [J]. Mater. Sci. Eng., 2019, A746 : 1
27 Xie B J , Sun M Y , Xu B , et al . Oxidation of stainless steel in vacuum and evolution of surface oxide scales during hot-compression bonding [J]. Corros. Sci., 2019, 147: 41
28 Zhao G D , Yu L X , Qi F , et al . The minor precipitation at the final stage of U720Li solidification [J]. Acta Metall. Sin. (Engl. Lett.), 2016, 29: 518
29 Liu P , Zhang R , Yuan Y , et al . Hot deformation behavior and workability of a Ni-Co based superalloy [J]. J. Alloys Compd., 2020, 83: 154618
30 Liu F F , Chen J Y , Dong J X , et al . The hot deformation behaviors of coarse, fine and mixed grain for Udimet 720Li superalloy [J]. Mater. Sci. Eng., 2016, A651: 102
31 Wu Y S , Liu Z , Qin X Z , et al . Effect of initial state on hot deformation and dynamic recrystallization of Ni-Fe based alloy GH984G for steam boiler applications [J]. J. Alloys Compd., 2019, 795: 370
32 Paggi A , Angella G , Donnini R . Strain induced grain boundary migration effects on grain growth of an austenitic stainless steel during static and metadynamic recrystallization [J]. Mater. Charact., 2015, 107: 174
33 Sakai T . Dynamic recrystallization microstructures under hot working conditions [J]. J. Mater. Process. Technol., 1995, 53: 349
34 Cao Y , Di H S , Zhang J C , et al . Research on dynamic recrystallization behavior of Incoloy 800H [J]. Acta Metall. Sin., 2012, 48: 1175
曹 宇, 邸洪双, 张洁岑 等 . 800H合金动态再结晶行为研究 [J]. 金属学报, 2012, 48: 1175
35 Hu G X , Cai X , Rong Y H . Fundamentals of Materials Science [M]. Shanghai: Shanghai Jiao Tong University Press, 2010: 5
胡赓祥, 蔡 珣, 戎咏华 . 材料科学基础 [M]. 上海: 上海交通大学出版社, 2010: 5
36 Xie B C , Yu H , Sheng T , et al . DDRX and CDRX of an as-cast nickel-based superalloy during hot compression at γ′ sub-/super-solvus temperatures [J]. J. Alloys Compd., 2019, 803: 16
37 Hu W , Ponge D , Gottstein G . Origin of grain boundary motion during diffusion bonding by hot pressing [J]. Mater. Sci. Eng., 1995, A190: 223
38 Mandal S , Jayalakshmi M , Bhaduri A K . et al . Effect of strain rate on the dynamic recrystallization behavior in a nitrogen-enhanced 316L(N) [J]. Metall. Mater. Trans.,2014, 45A: 5645
39 Bellier S P , Doherty R D . The structure of deformed aluminium and its recrystallization—Investigations with transmission Kossel diffraction [J]. Acta. Metall., 1977, 25: 521
40 Sakai T , Belyakov A , Kaibyshev R , et al . Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions [J]. Prog. Mater. Sci., 2014, 60: 130
41 Zhong X T , Wang L , Liu F . Study on formation mechanism of necklace structure in discontinuous dynamic recrystallization of Incoloy 028 [J]. Acta Metall. Sin., 2018, 54: 969
钟茜婷, 王 磊, 刘 峰 . Incoloy 028合金不连续动态再结晶中链状组织形成机理研究 [J]. 金属学报, 2018, 54: 969
[1] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[2] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[3] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[4] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[5] NI Ke, YANG Yinhui, CAO Jianchun, WANG Liuhang, LIU Zehui, QIAN Hao. Softening Behavior of 18.7Cr-1.0Ni-5.8Mn-0.2N Low Nickel-Type Duplex Stainless Steel During Hot Compression Deformation Under Large Strain[J]. 金属学报, 2021, 57(2): 224-236.
[6] CHEN Wenxiong, HU Baojia, JIA Chunni, ZHENG Chengwu, LI Dianzhong. Post-Dynamic Softening of Austenite in a Ni-30%Fe Model Alloy After Hot Deformation[J]. 金属学报, 2020, 56(6): 874-884.
[7] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
[8] WU Huajian, CHENG Renshan, LI Jingren, XIE Dongsheng, SONG Kai, PAN Hucheng, QIN Gaowu. Effect of Al Content on Microstructure and Mechanical Properties of Mg-Sn-Ca Alloy[J]. 金属学报, 2020, 56(10): 1423-1432.
[9] ZHANG Yong, LI Xinxu, WEI Kang, WAN Zhipeng, JIA Chonglin, WANG Tao, LI Zhao, SUN Yu, LIANG Hongyan. Hot Deformation Characteristics of Novel Wrought Superalloy GH4975 Extruded Rod Used for 850 ℃ Turbine Disc[J]. 金属学报, 2020, 56(10): 1401-1410.
[10] Xu LI,Qingbo YANG,Xiangze FAN,Yonglin GUO,Lin LIN,Zhiqing ZHANG. Influence of Deformation Parameters on Dynamic Recrystallization of 2195 Al-Li Alloy[J]. 金属学报, 2019, 55(6): 709-719.
[11] Yahui DENG,Yinhui YANG,Jianchun CAO,Hao QIAN. Research on Dynamic Recrystallization Behavior of 23Cr-2.2Ni-6.3Mn-0.26N Low Nickel TypeDuplex Stainless Steel[J]. 金属学报, 2019, 55(4): 445-456.
[12] Xiting ZHONG, Lei WANG, Feng LIU. Study on Formation Mechanism of Necklace Structure in Discontinuous Dynamic Recrystallization of Incoloy 028[J]. 金属学报, 2018, 54(7): 969-980.
[13] Yusen SU, Yinhui YANG, Jianchun CAO, Yuliang BAI. Research on Hot Working Behavior of Low-NickelDuplex Stainless Steel 2101[J]. 金属学报, 2018, 54(4): 485-493.
[14] Tao WANG, Zhipeng WAN, Yu SUN, Zhao LI, Yong ZHANG, Lianxi HU. Dynamic Softening Behavior and Microstructure Evolution of Nickel Base Superalloy[J]. 金属学报, 2018, 54(1): 83-92.
[15] Yun CAI,Chaoyang SUN,Li WAN,Daijun YANG,Qingjun ZHOU,Zexing SU. STUDY ON THE DYNAMIC RECRYSTALLIZATION SOFTENING BEHAVIOR OF AZ80 MAGNESIUM ALLOY[J]. 金属学报, 2016, 52(9): 1123-1132.
No Suggested Reading articles found!