Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (7): 872-876    DOI: 10.3724/SP.J.1037.2011.00236
论文 Current Issue | Archive | Adv Search |
EFFECT OF Cu CONTENT ON THE CORROSION RESISTANCE OF Zr-0.80Sn-0.34Nb-0.39Fe-0.10Cr-xCu ALLOY IN SUPERHEATED STEAM AT 500 ℃
YAO Meiyi1, 2), ZHANG Yu1),  LI Shilu1), ZHANG Xin1), ZHOU Jun3), ZHOU Bangxin1, 2)
1) Institute of Materials, Shanghai University, Shanghai 200072
2) Laboratory for Microstructures, Shanghai University, Shanghai 200444
3) Northwest Institute for Non--ferrous Metal Research, Xi'an 710016
Cite this article: 

YAO Meiyi ZHANG Yu LI Shilu ZHANG Xin ZHOU Jun ZHOU Bangxin. EFFECT OF Cu CONTENT ON THE CORROSION RESISTANCE OF Zr-0.80Sn-0.34Nb-0.39Fe-0.10Cr-xCu ALLOY IN SUPERHEATED STEAM AT 500 ℃. Acta Metall Sin, 2011, 47(7): 872-876.

Download:  PDF(860KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The effect of Cu content on the corrosion resistance of Zr-0.8Sn-0.34Nb-0.39Fe-0.1Cr-xCu alloys (x=0.05-0.5, mass fraction, %) was investigated in superheated steam at 500 ℃ and10.3 MPa by autoclave tests. The microstructures of the alloys are observed by TEM. The results show that (0.05-0.5)Cu addition has little effect on the corrosion resistance of the alloys. When x is below 0.2, the precipitates Zr(Fe, Cr, Nb)2 with hcp structure and Zr3Fe containing Cu with orthorhombic structure are detected. When x is above 0.2, besides Zr(Fe, Cr, Nb)2 and Zr3Fe containing Cu, the precipitate of Zr2Cu with tetragonal structure is also detected. Zr(Fe, Cr, Nb)2 precipitates are smaller than the precipitates containing Cu in size. The precipitates containing Cu are found in the alloy even with 0.05Cu, indicating that the Cu content in α-Zr matrix is very small. Therefore, the reason that the Cu content has little effect on the corrosion resistance of the alloys is maybe related to the lower Cu content in α-Zr matrix.
Key words:  zirconium alloy      Cu content      corrosion resistance      superheated pressurized steam      microstructure     
Received:  13 April 2011     
ZTFLH: 

TL341

 
Fund: 

Supported by National Natural Science Foundation of China (Nos.50871064 and 50971084), High Technology Research and Development Program of China (No.2008AA031701), Natural Science Foundation of Shanghai (No.09ZR1411700) and Shanghai Leading Academic Discipline Project (No.S30107)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00236     OR     https://www.ams.org.cn/EN/Y2011/V47/I7/872

[1] IAEA–TECDOC–996, IAEA, Vienna, 1998, ISSN 1011–4289, January, 1998

[2] Garzarolli F, Broy Y, Busch R A. In: Bradley E R, Sabol G P, eds., Zirconium in the Nuclear Industry: 11th International Symposium, ASTM STP 1295, Garmisch–Partenkirchen, Germany: ASTM International, 1996: 850

[3] Isobe T, Matsuo Y. In: Eucken C M, Garde A M, eds., Zirconium in the Nuclear Industry: Ninth International Symposium, ASTM STP 1132, Philadelphia: ASTM International, 1991: 346

[4] Takeda K, Anada H. In: Sabol G P, Moan G D, eds., Zirconium in the Nuclear Industry: Twelfth International Symposium, ASTM STP 1354, West Conshohocken, PA: ASTM International, 2000: 592

[5] Broy Y, Garzarolli F, Seibold A, Van Swam L F. In: Sabol G P, Moan G D, eds., Zirconium in the Nuclear Industry: Twelfth International Symposium, ASTM STP 1354, West Conshohocken, PA: ASTM International, 2000: 609

[6] Yueh H K, Kesterson R L, Comstock R J, Shah H H, Colburn D J, Dahlback M, Hallstadius L. J ASTM Int, 2005; 2: 330

[7] Park J Y, Choi B K, Yoo S J, Jeong Y H. J Nucl Mater, 2006; 359: 59

[8] Jung Y H, Lee M H, Kim H G, Park J Y, Jeong Y H. J Alloys Compd, 2009; 479: 423

[9] Li S L, Yao M Y, Zhang X, Geng J Q, Peng J C, Zhou B X. Acta Metall Sin, 2011; 47: 163

(李士炉, 姚美意, 张欣, 耿建桥, 彭剑超, 周邦新. 金属学报, 2011; 47: 163)

[10] Hong H S, Moon J S, Kim S J, Lee K S. J Nucl Mater, 2001; 297: 113

[11] Mardon J P, Charquet D, Senevat J. In: Sabol G P, Moan G D, eds., Zirconium in the Nuclear Industry: Twelfth International Symposium, ASTM STP 1354, West Conshohocken,

PA: ASTM International, 2000: 505

[12] Yao M Y. PhD Thesis. Shanghai University, 2007

(姚美意. 上海大学博士论文, 2007)

[13] Jeong Y H, Lee K O, Kim H G. J Nucl Mater, 2002; 302: 9

[14] Kim H G, Jeong Y H, Kim T H. J Nucl Mater, 2004; 326: 125

[15] Jeong Y H, Kim H G, Kim D J. J Nucl Mater, 2003; 323: 72

[16] Yao M Y, Zhou B X, Li Q, Liu W Q, Geng X, Lu Y P. J Nucl Mater, 2008; 374: 197
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[10] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[11] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[12] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[13] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[14] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[15] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
No Suggested Reading articles found!