|
|
EFFECT OF Cu CONTENT ON THE CORROSION RESISTANCE OF Zr-0.80Sn-0.34Nb-0.39Fe-0.10Cr-xCu ALLOY IN SUPERHEATED STEAM AT 500 ℃ |
YAO Meiyi1, 2), ZHANG Yu1), LI Shilu1), ZHANG Xin1), ZHOU Jun3), ZHOU Bangxin1, 2) |
1) Institute of Materials, Shanghai University, Shanghai 200072
2) Laboratory for Microstructures, Shanghai University, Shanghai 200444
3) Northwest Institute for Non--ferrous Metal Research, Xi'an 710016 |
|
Cite this article:
YAO Meiyi ZHANG Yu LI Shilu ZHANG Xin ZHOU Jun ZHOU Bangxin. EFFECT OF Cu CONTENT ON THE CORROSION RESISTANCE OF Zr-0.80Sn-0.34Nb-0.39Fe-0.10Cr-xCu ALLOY IN SUPERHEATED STEAM AT 500 ℃. Acta Metall Sin, 2011, 47(7): 872-876.
|
Abstract The effect of Cu content on the corrosion resistance of Zr-0.8Sn-0.34Nb-0.39Fe-0.1Cr-xCu alloys (x=0.05-0.5, mass fraction, %) was investigated in superheated steam at 500 ℃ and10.3 MPa by autoclave tests. The microstructures of the alloys are observed by TEM. The results show that (0.05-0.5)Cu addition has little effect on the corrosion resistance of the alloys. When x is below 0.2, the precipitates Zr(Fe, Cr, Nb)2 with hcp structure and Zr3Fe containing Cu with orthorhombic structure are detected. When x is above 0.2, besides Zr(Fe, Cr, Nb)2 and Zr3Fe containing Cu, the precipitate of Zr2Cu with tetragonal structure is also detected. Zr(Fe, Cr, Nb)2 precipitates are smaller than the precipitates containing Cu in size. The precipitates containing Cu are found in the alloy even with 0.05Cu, indicating that the Cu content in α-Zr matrix is very small. Therefore, the reason that the Cu content has little effect on the corrosion resistance of the alloys is maybe related to the lower Cu content in α-Zr matrix.
|
Received: 13 April 2011
|
|
Fund: Supported by National Natural Science Foundation of China (Nos.50871064 and 50971084), High Technology Research and Development Program of China (No.2008AA031701), Natural Science Foundation of Shanghai (No.09ZR1411700) and Shanghai Leading Academic Discipline Project (No.S30107) |
[1] IAEA–TECDOC–996, IAEA, Vienna, 1998, ISSN 1011–4289, January, 1998[2] Garzarolli F, Broy Y, Busch R A. In: Bradley E R, Sabol G P, eds., Zirconium in the Nuclear Industry: 11th International Symposium, ASTM STP 1295, Garmisch–Partenkirchen, Germany: ASTM International, 1996: 850[3] Isobe T, Matsuo Y. In: Eucken C M, Garde A M, eds., Zirconium in the Nuclear Industry: Ninth International Symposium, ASTM STP 1132, Philadelphia: ASTM International, 1991: 346[4] Takeda K, Anada H. In: Sabol G P, Moan G D, eds., Zirconium in the Nuclear Industry: Twelfth International Symposium, ASTM STP 1354, West Conshohocken, PA: ASTM International, 2000: 592[5] Broy Y, Garzarolli F, Seibold A, Van Swam L F. In: Sabol G P, Moan G D, eds., Zirconium in the Nuclear Industry: Twelfth International Symposium, ASTM STP 1354, West Conshohocken, PA: ASTM International, 2000: 609[6] Yueh H K, Kesterson R L, Comstock R J, Shah H H, Colburn D J, Dahlback M, Hallstadius L. J ASTM Int, 2005; 2: 330[7] Park J Y, Choi B K, Yoo S J, Jeong Y H. J Nucl Mater, 2006; 359: 59[8] Jung Y H, Lee M H, Kim H G, Park J Y, Jeong Y H. J Alloys Compd, 2009; 479: 423[9] Li S L, Yao M Y, Zhang X, Geng J Q, Peng J C, Zhou B X. Acta Metall Sin, 2011; 47: 163(李士炉, 姚美意, 张欣, 耿建桥, 彭剑超, 周邦新. 金属学报, 2011; 47: 163)[10] Hong H S, Moon J S, Kim S J, Lee K S. J Nucl Mater, 2001; 297: 113[11] Mardon J P, Charquet D, Senevat J. In: Sabol G P, Moan G D, eds., Zirconium in the Nuclear Industry: Twelfth International Symposium, ASTM STP 1354, West Conshohocken,PA: ASTM International, 2000: 505[12] Yao M Y. PhD Thesis. Shanghai University, 2007(姚美意. 上海大学博士论文, 2007)[13] Jeong Y H, Lee K O, Kim H G. J Nucl Mater, 2002; 302: 9[14] Kim H G, Jeong Y H, Kim T H. J Nucl Mater, 2004; 326: 125[15] Jeong Y H, Kim H G, Kim D J. J Nucl Mater, 2003; 323: 72[16] Yao M Y, Zhou B X, Li Q, Liu W Q, Geng X, Lu Y P. J Nucl Mater, 2008; 374: 197 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|