Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (10): 1227-1232    DOI: 10.3724/SP.J.1037.2011.00198
论文 Current Issue | Archive | Adv Search |
INFLUENCES OF Fe3C AND PEARLITE ON THE ELECTROCHEMICAL CORROSION BEHAVIORS OF LOW CARBON FERRITE STEEL
WANG Liwei, DU Cuiwei, LIU Zhiyong, ZENG Xiaoxiao, LI Xiaogang
Key Laboratory of Corrosion and Protection, Ministry of Education of China, Corrosion and Protection Center, University
of Science and Technology Beijing, Beijing 100083
Cite this article: 

WANG Liwei DU Cuiwei LIU Zhiyong ZENG Xiaoxiao LI Xiaogang. INFLUENCES OF Fe3C AND PEARLITE ON THE ELECTROCHEMICAL CORROSION BEHAVIORS OF LOW CARBON FERRITE STEEL. Acta Metall Sin, 2011, 47(10): 1227-1232.

Download:  PDF(1386KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The microstructure of X80 pipeline steel welding joint, consisted of Fe3C and degenerated pearlite, was simulated by carburizing treatment. The effects of Fe3C and pearlite on the electrochemical properties of bainitic ferrite steel and localized corrosion occurrence regularity in Yingtan soil simulation solution were investigated by scanning Kelvin probe (SKP), scanning vibrating probe (SVP) and local electrochemical impedance spectroscopy (LEIS), combined with immersion test. It is demonstrated that the corrosion potential of degenerated pearlite is lower than bainitic ferrite, and decreases with increasing Fe3C content. Localized corrosion occurs on the surface of the carburized sample in Yingtan soil simulation solution. The anodic oxidation process is observed to be initiated on the carburized degenerated pearlite, whereas the cathodic reaction involving dissolved H+ is on bainitic ferrite, and the anodic current density increases with increasing Fe3C concentration. As the ion contents of the soil simulation solution doubled, the anodic dissolution of degenerated pearlite increases, and the local impedance of the electrode decreases.
Key words:  ferrite steel      carburizing      microstructure      local electrochemistry     
Received:  06 April 2011     
ZTFLH: 

TG174

 
Fund: 

Supported by National Natural Science Foundation of China (Nos.50971016 and 50901041) and Fundamental Research Funds for the Central Universities (No.FRF–TP–09–029B)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00198     OR     https://www.ams.org.cn/EN/Y2011/V47/I10/1227

[1] Carneiro R A, Ratnapuli R C, de Freitas Cunha Lins V. Mater Sci Eng, 2003; A357: 104

[2] Gonzalez–Rodriguez J G, Casales M, Salinas–Bravo V M. Corrosion, 2002; 58: 584

[3] Chu R, Chen W, Wang S H. Corrosion, 2004; 60: 275

[4] Bulger J T, Lu BT, Luo J L. J Mater Sci, 2006; 41: 5001

[5] Albarran J L, Martinez L, Lopez H F. Corros Sci, 1999; 41: 1037

[6] Lee S, Kim B, Kwon D. Metall Mater Trans, 1992; 23A: 2803

[7] Liu Z Y, Li X G, Du C W. Corros Sci, 2009; 51: 895

[8] Kobayashi Y, Ume K, Hyodo T. Corros Sci, 1987; 27: 1117

[9] Fan Z, Liu J Y, Li S L, Zhang T J. J Southwest Petro Univ (Sci Technol Ed), 2009; 31: 171

(范舟, 刘建仪, 李士伦, 张天江. 西南石油大学学报(自然科学版), 2009; 31: 171)

[10] Santos T F A, Hermenegildo T F C, Afonso C R M. Eng Fract Mech, 2010; 77: 2937

[11] Ale R M, Rebello J M A, Charlier J. Mater Charact, 1996; 37: 89

[12] Xue X H, Zhou Y, Qian B N, Li J L, Lou S N. J Shanghai Jiaotong Univ, 2003; 37: 1854

(薛小怀, 周 昀, 钱百年, 李晶丽, 楼松年. 上海交通大学学报, 2003; 37: 1854)

[13] Souto R M, Gonzalez–Garcia Y, Bastos A C. Corros Sci, 2007; 49: 4568

[14] Simôes A M, Bastos A C, Souto R M. Corros Sci, 2007; 49: 726

[15] Krawiec H, Vignal V, Oltra R. Electrochem Commun, 2004; 6: 655

[16] Annergren I, Zou F, Thierry D. Electrochim Acta, 1999; 44: 4383

[17] Tang X, Cheng Y F. Appl Surf Sci, 2008; 254: 5199

[18] Zou F, Dominigue T, Han W A. Corros Sci Protect Technol, 1997; 9: 276

(邹锋, Dominigue T, 韩文安. 腐蚀科学与防护技术, 1997; 9: 276)

[19] Zhang G A, Cheng Y F. Corros Sci, 2009; 51: 1714

[20] ASM Committee on Gas Carburizing. Carburizing and Carbonitriding. Ohio: American Society for Metals, 1977: 179

[21] Liu Z Y, Li X G, Du C W. Corros Sci, 2009; 51: 2863

[22] Ohnori Y. Trans ISIJ, 1972; 12: 128

[23] Stratmann M. Corros Sci, 1987; 27: 869

[24] Stratmann M, Streckel H, Bunsen B. Phys Chem, 1988, 92: 1244

[25] Park C J, Kwon H S. Corros Sci, 2002; 44: 2817

[26] Lo I H, Fu Y, Lin C J. Corros Sci, 2006; 48: 696

[27] Liu Z Y, Li X G, Du C W. Corros Sci, 2009; 51: 895

[28] Liu X, Mao X. Scr Mater, 1995; 33: 145

[29] Clover D, Kinsella B, Pejcic B. J Appl Electrochem, 2005; 35: 139

[30] Liu Z Y, Zhai G L, Du C W, Li X G. Acta Metall Sin, 2008; 44: 209

(刘智勇, 翟国丽, 杜翠薇, 李晓刚. 金属学报, 2008; 44: 209)
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[11] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[12] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[13] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[14] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[15] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
No Suggested Reading articles found!