Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (10): 1233-1240    DOI: 10.3724/SP.J.1037.2011.00126
论文 Current Issue | Archive | Adv Search |
MICROSTRUCTURE AND IMPACT FRACTURE BEHAVIOUR OF HAZ OF F460 HEAVY SHIP PLATE WITH HIGH STRENGTH AND TOUGHNESS
LIU Dongsheng, CHENG Binggui, LUO Mi
Institute of Research of Iron and Steel, Shasteel, Zhangjiagang 215625
Cite this article: 

LIU Dongsheng CHENG Binggui LUO Mi. MICROSTRUCTURE AND IMPACT FRACTURE BEHAVIOUR OF HAZ OF F460 HEAVY SHIP PLATE WITH HIGH STRENGTH AND TOUGHNESS. Acta Metall Sin, 2011, 47(10): 1233-1240.

Download:  PDF(1667KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Thermal cycles of the heat–affected zone (HAZ) of an advanced F460 steel plate used as offshore structure and ship–building in the future were simulated by employing a Gleeble 3800 thermomechanical simulator. The microstructures of the HAZ formed at different heat input energies (E) were characterized by means of OM, SEM, EBSD and TEM, and mechanical properties were measured. When E is equal to 15 kJ/cm, the microstructures consist of mainly lath–like martensite (LM) with high density dislocations and large misorientations, between the laths exist fine martensite/austenite (M/A) constituents. When E is equal to 30 kJ/cm, lath–like bainite (LB) is formed. The lath grains and M/A constituents will coarsen and the amount of high angle (≥15?) boundaries will decrease with the increase of E to 50 kJ/cm. When E is in a range of 100—300 kJ/cm, the microstructures consist of granular bainite (GB)+upper bainite (UB)+quasi–polygonal ferrite (QPF). The hardness of the HAZ (HV), the maximum Charpy V notch (CVN) impact load (Pm), the brittle fracture arrested load (Pa), the crack propagation rate, and the entire displacement (d0) of the CVN impact course decrease with the increase of E. The size of cleavage facets increases with the increase of E, which can be used to explain the effective grain size of the HAZ increases with the increase of E, as a result, the hardness decreases and low temperature toughness deteriorates as E increases. The upper limit of the simulated heat input E for the F460 steel is 30 kJ/cm which makes the toughness of the HAZ equivalent to that of the mother plate at −60 ℃.
Key words:  F460 heavy plate      simulated heat–affected zone (HAZ)      fine microstructure      impact fracture behaviour      low temperature toughness     
Received:  10 March 2011     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00126     OR     https://www.ams.org.cn/EN/Y2011/V47/I10/1233

[1] McPherson N A. Ironmaking Steelmaking, 2009; 36(3): 93

[2] Hodnik P, F¨urst C, Pennerstorfer P, Lengauer H. Stahl Eisen, 2008; 128(10): 35

[3] Weng Y Q, Kang Y L. Iron Steel, 2010; 45(9): 1

(翁宇庆, 康永林. 钢铁, 2010; 45(9): 1)

[4] Ichimiya K, Sumi H, Hirai T. JFE Tech Rep, 2008; (11): 7

[5] Kaneko M, Izumi M, Shibta N, Furukawa N, Abe K. R &D Kobe Steel Eng Rep, 2008; 58(1): 39

[6] Nagai Y, Inoue H, Nakashima T, Adachi T, Fukami H, Date A, Kojima A. Nippon Steel Tech Rep, 2004; (90): 14

[7] Sch¨utz W, Schr¨oter F. Mater Sci Technol, 2005; 21: 590

[8] Wu H B, Tang D, Zhao A M, Zhu H B. Met World, 2010; (5): 40

(武会宾, 唐荻, 赵爱民, 朱海宝. 金属世界, 2010; (5): 40)

[9] Di G B, Liu Z Y, Ma Q S, Liu X H, Wang G D. J Iron Steel Res, 2010; 22(7): 51

(狄国标, 刘振宇, 麻庆申, 刘相华, 王国栋. 钢铁研究学报, 2010; 22(7): 51)

[10] Liu D, Li Q, Emi T. Metall Mater Trans, 2011; 42A: 1349

[11] Liu D, Cheng B, Luo M. ISIJ Int, 2011; 51: 603

[12] Shikanai N, Mitao S, Endo S. JFE Tech Rep, 2008; (1): 1

[13] Schmidt D, Dehmel R, Horn G. Stahl Eisen, 2008; 128(8): 25

[14] Wang G D. Steel Roll, 2010; 27(2): 1

(王国栋. 轧钢, 2010; 27(2): 1)

[15] Ouchi C. ISIJ Int, 2001; 41: 542

[16] de Meester B. ISIJ Int, 1997; 37: 537

[17] Miao C L, Shang C J, Wang X M, Zhang L F, Mani S. Acta Metall Sin, 2010; 46: 541

(缪成亮, 尚成嘉, 王学敏, 张龙飞, Mani S. 金属学报, 2010; 46: 541)

[18] Zhao Y Z, Li B, Shi Y W, Tian Z L. Acta Metall Sin, 2003; 39: 505

(赵玉珍, 李擘, 史耀武, 田志凌. 金属学报, 2003; 39: 505)

[19] Wiesner C S. Int J Pres Ves Piping, 1996; 69: 185

[20] Hashemi S H. Int J Pres Ves Piping, 2008; 85: 879

[21] Deng W, Gao X H, Qin X M, Zhao D W, Du L X, Wang G D. Acta Metall Sin, 2010; 46: 553

(邓伟, 高秀华, 秦小梅, 赵德文, 杜林秀, 王国栋. 金属学报, 2010; 46: 533)

[22] Zhou M, Du L X, Liu X H, Wang Y X. J Plast Eng, 2010; 17(5): 108

(周民, 杜林秀, 刘相华, 王悦新. 塑性工程学报, 2010; 17(5): 108)

[23] Grong Ø. Metallurgical Modelling of Welding. 2nd Ed. London: The Institute of Materials, 1997: 26

[24] Hwang B, Lee C G, Lee T H. Metall Mater Trans, 2010; 41A: 85

[25] Han S Y, Shin S Y, Lee S, Kim N J, Bae J H, Kim K. Metall Mater Trans, 2010; 41A: 329

[26] Han S Y, Shin S Y, Seo C H, Lee H, Bae J H, Kim K. Metall Mater Trans, 2010; 41A: 1851

[27] Suzuki S, Ichimiya K, Akita T. JFE Tech Rep, 2005; (5): 24

[28] Minagawa M, Ishida K. Nippon Steel Tech Rep, 2004; (90): 7

[29] Shu W,Wang X M, Li S R, He X L. Acta Metall Sin, 2010; 46: 997

(舒玮, 王学敏, 李书瑞, 贺信莱. 金属学报, 2010; 46: 997)

[30] Yu S F, Qian B N, Guo X M. Acta Metall Sin, 2005; 41: 402

(于少飞, 钱百年, 国旭明. 金属学报, 2005; 41: 402)
[1] Liming DONG,Li YANG,Jun DAI,Yu ZHANG,Xuelin WANG,Chengjia SHANG. Effect of Mn, Ni, Mo Contents on Microstructure Transition and Low Temperature Toughness of Weld Metal for K65 Hot Bending Pipe[J]. 金属学报, 2017, 53(6): 657-668.
[2] Changjun WANG,Jianxiong LIANG,Zhenbao LIU,Zhiyong YANG,Xinjun SUN,Qilong YONG. EFFECT OF METASTABLE AUSTENITE ON MECHANI-CAL PROPERTY AND MECHANISM IN CRYOGENICSTEEL APPLIED IN OCEANEERING[J]. 金属学报, 2016, 52(4): 385-393.
[3] Zhenjia XIE,Chengjia SHANG,Wenhao ZHOU,Binbin WU. EFFECT OF RETAINED AUSTENITE ON DUCTILITY AND TOUGHNESS OF A LOW ALLOYED MULTI-PHASE STEEL[J]. 金属学报, 2016, 52(2): 224-232.
[4] GAO Guhui, GUI Xiaolu, AN Baifeng, TAN Zhunli, BAI Bingzhe, WENG Yuqing. EFFECT OF FINISH COOLING TEMPERATURE ON MICROSTRUCTURE AND LOW TEMPERATURE TOUGHNESS OF Mn-SERIES ULTRA-LOW CARBON HIGH STRENGTH LOW ALLOYED STEEL[J]. 金属学报, 2015, 51(1): 21-30.
[5] LIU Dongsheng CHENG Binggui CHEN Yuanyuan. FINE MICROSTRUCTURE AND TOUGHNESS OF LOW CARBON COPPER CONTAINING ULTRA HIGH STRENGTH NV-F690 HEAVY STEEL PLATE[J]. 金属学报, 2012, 48(3): 334-342.
[6] YANG Yinhui CHAI Feng YAN Biao SU Hang YANG Caifu. STUDY ON LOW TEMPERATURE TOUGHNESS IMPROVEMENT OF WELDING COARSE GRAIN ZONE OF HULL STEELS BY Ti TREATMENT[J]. 金属学报, 2010, 46(1): 62-70.
No Suggested Reading articles found!