Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (5): 566-572    DOI: 10.3724/SP.J.1037.2010.00686
论文 Current Issue | Archive | Adv Search |
INFLUENCE OF AXISYMMETRIC MAGNETIC FIELD ON MICROSTRUCTURE AND FRICTION PERFORMANCE OF TIN FILM DEPOSITED BY ARC ION PLATING
XIAO Jinquan1), LANG Wenchang1, 2), ZHAO Yanhui1), GONG Jun1), SUN Chao1), WEN Lishi1)
1) Division of Surface Engineering of Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2) Key Lab of Material Processing and Mould Technology, Wenzhou Vocational $\&$ Technical College, Wenzhou 325035
Cite this article: 

XIAO Jinquan LANG Wenchang ZHAO Yanhui GONG Jun SUN Chao WEN Lishi. INFLUENCE OF AXISYMMETRIC MAGNETIC FIELD ON MICROSTRUCTURE AND FRICTION PERFORMANCE OF TIN FILM DEPOSITED BY ARC ION PLATING. Acta Metall Sin, 2011, 47(5): 566-572.

Download:  PDF(1237KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Arc ion plating (AIP) has been widely used in the deposition of various kinds of thin solid films. In AIP process, cathode spot motion is the key factor because it affects the physical characteristics of arc plasma, the utilization of cathode materials, the ejection of macroparticles (MPs) and the quality of subsequent films. It has been found that the cathode spot can be steered by an external magnetic field, such as an axisymmetric magnetic field (AMF). In this work, a new AMF produced by using an adjustable electromagnetic coil associated with a concentric magnetic flux guider was applied to the cathode surface to deposit TiN films, and it was focused on the influence of the AMF on the content and size of MPs, microstructure and friction performance of TiN films. The results show that the size and number of MPs decrease significantly with the increase in the transverse component of AMF. Meanwhile, the TiN film (111) preferred orientation enhances and its grain size decreases. Furthermore, the friction coefficient of films reduces and the wear resistance of films increases.
Key words:  axisymmetric magnetic field      arc ion plating      macroparticle      microstructure      riction performance     
Received:  22 December 2010     
ZTFLH: 

TB43,TG174.4

 
Fund: 

Supported by National Natural Science foundation of China (No.50801062)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00686     OR     https://www.ams.org.cn/EN/Y2011/V47/I5/566

[1] Kessler O, Herding Th, Hoffmann F, Mayr P. Surf Coat Technol, 2004; 182: 184

[2] Choy K L. Prog Mater Sci, 2003; 48: 57

[3] Schulz A, Mayra P, Staevesb J, Schmoeckelb D. Surf Coat Technol, 1997; 94: 446

[4] Wang D Y, Li Y W, Chang C L, Ho WY. Surf Coat Technol, 1999; 114: 109

[5] Clarysse F, Lauwerens W, Vermeulen M. Wear, 2008; 264: 400

[6] Sanders D M, Boercker D B, Falabella S. IEEE Trans Plasma Sci, 1990; 18: 883

[7] Vyskocil J, Musil J. Surf Coat Technol, 1990; 43: 299

[8] Boxman R L, Goldsmith S, Greenwood A. IEEE Trans Plasma Sci, 1997; 25: 1174

[9] Brown I G. Annu Rev Mater Sci, 1998; 28: 243

[10] Boxman R L. IEEE Trans Plasma Sci, 2001; 29: 762

[11] Boxman R L, Zhitomirsky V N. Rev Sci Instrum, 2006; 77: 6748

[12] Siemroth P, Schultrich B, Schulke T. Surf Coat Technol, 1995; 74: 92

[13] Boxman R L, Martin P J, Sanders D M. Handbook of Vacuum Arc Science and Technology, New Jersey: Noyes Publications, 1995: 3

[14] Anders A. Cathodic Arcs: From Fractal Spots to Energetic Condensation, New York: Springer, 2008: 75

[15] Juttner B. J Phys, 2001; 34D: 103

[16] Beilis I I. IEEE Trans Plasma Sci, 2002; 30: 2124

[17] Karpov D A. Surf Coat Technol, 1997; 96: 22

[18] Takikawa H, Tanoue H. IEEE Trans Plasma Sci, 2007; 35: 992

[19] Boxman R L, Goldsmith S. Surf Coat Technol, 1992; 52: 39

[20] Anders S, Anders A, Brown I G. J Appl Phys, 1993; 74: 4239

[21] Akari K, Tamagaki H, Kumakiri T, Tsuji K. Surf Coat Technol, 1990; 43: 312

[22] Martin P J, Bendavid A. Surf Coat Technol, 2001; 142: 7

[23] Takikawa H, Miyakawa N, Sakakibara T. Surf Coat Technol, 2003; 171: 162

[24] Martin P J, Bendavid A. Surf Coat Technol, 2001; 142: 7

[25] Martin P J, Bendavid A, Kinder T J. IEEE Trans Plasma Sci, 1997; 25: 675

[26] Lin G Q, Zhao Y H, Guo H M, Wang D Z, Dong C, Wen L S. J Vac Sci Technol, 2004; 22: 1218

[27] Huang M D, Lin G Q, Zhao Y H, Wen L S, Dong C. Surf Coat Technol, 2003; 176: 109

[28] Siemroth P, Zimmer O, Schulke T, Vetter J. Surf Coat Technol, 1997; 94: 592

[29] Swift P D. J Phys, 1996; 29D: 2025

[30] Kang G H, Uchida H, Koh E S. Surf Coat Technol, 1994; 68: 141

[31] Ramalingam S, Qi C B, Kim K. US Pat 4673477, 1987

[32] Boxman R L, Beilis I I. IEEE Trans Plasma Sci, 2005; 33: 1618

[33] Lang W C, Xiao J Q, Gong J, Sun C, Huang R F, Wen L S. Acta Metall Sin, 2010; 46: 372

(郎文昌, 肖金泉, 宫骏, 孙超, 黄荣芳, 闻立时. 金属学报, 2010; 46: 372)

[34] Huang M D. PhD Thesis, Dalian University of Technology, 2002

(黄美东. 大连理工大学博士学位论文, 2002)

[35] Oh U C, Je J H. J Appl Phys, 1993; 74: 1692

[36] Tian M B. Thin Film Technologies and Materials, Beijing: Tsinghua University Press, 2006: 177

[37] Pelleg J, Zevin L Z, Lungo S. Thin Solid Films, 1991; 197: 117

[38] Zhao S S, Yang Y, Li J B, Gong J, Sun C. Surf Coat Technol, 2008; 202: 5185

[39] Davis C A. Thin Solid Films, 1993; 226: 30

[40] Mayrhofer P H, Kunc F, Musil J. Thin Solid Films, 2002; 415: 151

[41] Anders A, Pasaja N, Petersen T C, Keast V J. Surf Coat Technol, 2007; 202: 414

[42] Yang H G. PhD Thesis, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2009

(杨洪刚. 中科院金属所博士学位论文, 沈阳, 2009)
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[11] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[12] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[13] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[14] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[15] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
No Suggested Reading articles found!