Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (6): 743-750    DOI: 10.3724/SP.J.1037.2010.00560
论文 Current Issue | Archive | Adv Search |
EFFECT OF AGING TREATMENT AND La CONTENT ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF AZ91 ALLOY
WANG Shebin 1,2, QI Xiaoye 1, ZHANG Jinling 1,2, LIU Lu 1, XU Bingshe 1,2
1. College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024
2. Key Laboratory of Interface Science and Engineering in Advanced Materials Taiyuan University of Technology, Ministry of Education, Taiyuan 030024
Cite this article: 

WANG Shebin QI Xiaoye ZHANG Jinling LIU Lu XU Bingshe. EFFECT OF AGING TREATMENT AND La CONTENT ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF AZ91 ALLOY. Acta Metall Sin, 2011, 47(6): 743-750.

Download:  PDF(2923KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The effects of aging treatment and La content on the microstructures and mechanical properties of AZ91 magnesium alloys were investigated by XRD, SEM, EDS and microhardness meter. The results showed that a great number of β–phases were precipitated and distributed along the grain boundaries after aging treatment. As the content of La increased, the grain size of β–phase decreased gradually, while α–phase decreased first and then increased. The mechanical properties of as–cast and aged specimens increased first and then decreased as the cotet of La increased. The tensile strength, yield strength, elongatin and Vickers hardness of aged magesium alloys were increased by 12.65%, 16.85%, 13.71% and 37.24%, espectively. When the content of La was 0.1648%, the tensile strength, yield strength, elongation and Vickers hardness achieved 276 MPa, 208 MPa, 13.85% and 132 HV, respectively.
Key words:  AZ91 magnesium alloy      aging      mechanical property      microstructre     
Received:  21 October 2010     
ZTFLH: 

TG166.4

 
Fund: 

Supported by National Natural Science Foundation of China (No.50901048) and Returned Overseas Graduates Scientific Research Projects of Shanxi Province (No.2008–39)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00560     OR     https://www.ams.org.cn/EN/Y2011/V47/I6/743

[1] Aghion E, Bronfin B, Eliezer D. J Mater Process Technol, 2001; 117: 381

[2] Mordike B L, Ebert T. Mater Sci Eng, 2001; A302: 37

[3] Wang S B, Li X B, Fan J P, Wang S, Xu B S. Chin J Nonfer Met, 200919: 831

(王社斌, 李晓斌, 范晋平, 王 帅, 许并社. 中国有色金属学报, 2009; 19: 831)

[4] Cizek L, Greger M, Pawlica L, Dobrzanski L A, Tanski T. J Mater Process Technol, 2004; 157–158: 466

[5] Li P J, Tang B, Kandal ova E G. Mater Lett, 2005; 59: 671

[6] Zeng X Q, Wu Y J, Peng L M, Lin D, Ding W J, Peng Y H. Acta Metall Sin, 2010; 46: 1043

(曾小勤, 吴玉娟, 彭立明, 林栋樑, 丁文江, 彭赢红. 金属学报, 2010; 46: 1043)

[7] Wang K Q, Wang G J, Zhang J L, Wang S B, Xu B S. J Taiyuan Univ Technol, 2011; 1: 67

(王克勤, 王国军, 张金玲, 王社斌, 许并社. 太原理工大学学报, 2011; 1: 67)

[8] Wang S B, Zhang J L, Qi X Y, Xu B S. J Mater Eng, 2009; (Suppl. 1): 304

(王社斌, 张金玲, 祁小叶, 许并社. 材料工程, 2009; (增刊1): 304)

[9] Zhao Y H, Chen Y G, Tang Y B, Xiao S F, Wei S H, Zhang X P, Wang Q, Tu M J. Rare Met Mater Eng, 2010; 39: 844

(赵源华, 陈云贵, 唐永柏, 肖素芬, 魏尚海, 章晓萍, 王卿, 涂铭旌. 稀有金属材料与工程, 2010; 39: 844)

[10] Ma Y, Pan Z F, Zhang H F, Hao Y. J Lanzhou Univ Technol, 2009; 5: 9

(马 颖, 潘振峰, 张洪锋, 郝 远. 兰州理工大学学报, 2009; 5: 9)

[11] Ma Y L, Peng H D, Pan C C, Qin X, Du Y. Hot Work Technol, 2008; 37(10): 51

(麻彦龙, 彭华东, 潘承聪, 秦旭, 杜勇. 热加工工艺, 2008;37(10): 51)

[12] Xiao X L, Luo C P. Acta Metall Sin, 2001; 37: 2

(肖晓玲, 罗承萍. 金属学报, 2001; 37: 2 )

[13] Luo C P, Xiao X L, Liu J W. Acta Metall Sin, 2002; 38: 709

(罗承萍, 肖晓玲, 刘江文. 金属学报, 2002; 38: 709)

[14] Tang W, Han E H, Xu Y B, Liu L. Acta Metall Sin, 2005; 41: 1204

(唐 伟, 韩恩厚, 许永波, 刘 路. 金属学报, 2005; 41: 1204)

[15] Zhang J M, Jang B L, WanZ H, Yuan S, Xia P J. Heat Treat Met, 2007; 32: 7

(张菊梅, 蒋百灵, 王志虎, 袁 森, 夏鹏举. 金属热处理, 2007; 32: 7)

[16] Duly D, Cheynet M C, Brechet Y. Acta Metall Mater, 1994; 42: 3855

[17] Ren Z Y. Master Dissertation, Southwest University of Science and Technology, Mianyang, 2007

(任志远. 西南科技大学硕士学位论文, 绵阳, 2007)

[18] Xu B S, Wang S B, Zhang J L, Zhang J Y, Li M Z, Yao X H, Chen J, Wei Y H. Chin Pat, 0102168.9, 2008

(许并社, 王社斌, 张金玲, 张俊远, 李明照, 姚宪华, 陈 津, 卫英慧.中国专利, 0102168.9, 2008)

[19] Zhang J L. Master Dissertation, Taiyuan University of Technology, 2007

(张金玲. 太原理工大学硕士学位论文, 2007)

[20] Li Z J, Jin Q L, Jiang Y H, Zhou R. Acta Metall Sin, 2009; 45: 928

(李再久, 金青林, 蒋业华, 周荣. 金属学报, 2009; 45: 928)
[1] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[9] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[10] LIANG Kai, YAO Zhihao, XIE Xishan, YAO Kaijun, DONG Jianxin. Correlation Between Microstructure and Properties of New Heat-Resistant Alloy SP2215[J]. 金属学报, 2023, 59(6): 797-811.
[11] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[12] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[13] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[14] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[15] WANG Bin, NIU Mengchao, WANG Wei, JIANG Tao, LUAN Junhua, YANG Ke. Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel[J]. 金属学报, 2023, 59(5): 636-646.
No Suggested Reading articles found!