Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (2): 163-168    DOI: 10.3724/SP.J.1037.2010.00352
论文 Current Issue | Archive | Adv Search |
EFFECT OF ADDING Cu ON THE CORROSION RESISTANCE OF M5 ALLOY IN SUPERHEATED STEAM AT 500℃
LI Shilu1), YAO Meiyi1), ZHANG Xin1), GENG Jianqiao1), PENG Jianchao2), ZHOU Bangxin1)
1) Institute of Materials, Shanghai University, Shanghai 200072
2) Key Laboratory for Advanced Micro-Analysis, Shanghai University, Shanghai 200444
Cite this article: 

LI Shilu YAO Meiyi ZHANG Xin GENG Jianqiao PENG Jianchao ZHOU Bangxin. EFFECT OF ADDING Cu ON THE CORROSION RESISTANCE OF M5 ALLOY IN SUPERHEATED STEAM AT 500℃. Acta Metall Sin, 2011, 47(2): 163-168.

Download:  PDF(845KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The effect of Cu content on the corrosion resistance of Zr-1%Nb-xCu (x=0.05%-0.5%, mass fraction) was investigated in superheated steam at 500 ℃ and 10.3 MPa by autoclave tests. The microstructures of the alloys and oxide films on the corroded specimens were observed by TEM and SEM, respectively. The results showed that when the Cu content was below 0.2%, the corrosion resistance of the alloys was markedly improved with the increase of Cu content, while further addition of Cu did not lead to a further improvement in the corrosion resistance. When the Cu content was below 0.2%, the Cu mainly dissolved in the α-Zr matrix. And when the Cu content was more than 0.2%, part of Cu precipitated as Zr2Cu second phase particles. When the α-Zr matrix was oxidized, the Cu dissolved in the α-Zr could delay the process that the vacancies in the oxide film diffused and coalesced to form pores, and the pores developed into micro-cracks. Therefore, the corrosion resistance of the alloys was enhanced. It can be concluded that the Cu concentration in the α-Zr matrix, rather than the second phase particles containing Cu, is the main reason that the addition of Cu improves the corrosion resistance of M5 alloy in superheated steam at 500 ℃ and 10.3 MPa.
Key words:  zirconium alloy      Cu content      corrosion resistance      microstructure     
Received:  14 July 2010     
Fund: 

Supported by National Natural Science Foundation of China (Nos.50871064 and 50971084), High Technology Research and Development Program of China (No.2008AA031701),  Natural Science Foundation of Shanghai (No.09ZR1411700) and Shanghai Leading Academic Discipline Project (No.S30107)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00352     OR     https://www.ams.org.cn/EN/Y2011/V47/I2/163

[1] Park J Y, Choi B K, Yoo S J, Jeong Y H. J Nucl Mater, 2006; 359: 59

[2] Park J Y, Yoo S J, Choi B K, Jeong Y H. J Alloys Compd, 2007; 437: 274

[3] Hong H S, Moon J S, Kim S J, Lee K S. J Nucl Mater, 2001; 297: 113

[4] Jeong Y H, Kim H G, Kim T H. J Nucl Mater, 2003; 317: 1

[5] Kim J M, Jeong Y H. J Nucl Mater, 1999; 275: 74

[6] Charquet D, Hahn R, Ortlieb E, Gros J P, Wadier J F. In: Van Swam L F P, Eucken C M eds., Zirconium in the Nuclear Industry: 8th International Symposium, ASTM STP 1023, Baltimore: ASTM International, 1988: 405

[7] Anada H, Takeda K. In: Sabol G P, Bradley E R eds., Zirconium in the Nuclear Industry: 11th International Symposium, ASTM STP 1295, Ann Arbor: ASTM International, 1996: 35

[8] Wadman B, Lai Z, Andr´en H O, Nystr¨om A L, Rudling P, Pettersson H. In: Garde A M, Bradley E R eds., Zirconium in the Nuclear Industry: 10th International Symposium, ASTM STP 1245, Ann Arbor: ASTM International, 1994: 579

[9] Jeong Y H, Lee K O, Kim H G. J Nucl Mater, 2002; 302: 9

[10] Kim H G, Jeong Y H, Kim T H. J Nucl Mater, 2004; 326: 125

[11] Jeong Y H, Kim H G, Kim D J. J Nucl Mater, 2003; 323: 72

[12] Abe T, Shimono M, Ode M, Onodera H. Acta Mater, 2006; 54: 909

[13] Yang W D. Reactor Materials Science. 2nd Ed., Beijing: Atomic Energy Press, 2006: 260

(杨文斗. 反应堆材料学. 第二版. 北京: 原子能出版社, 2006: 260)

[14] Zhou B X, Li Q, Yao M Y, Liu W Q. Nucl Power Eng, 2005; 26: 364

(周邦新, 李 强, 姚美意, 刘文庆. 核动力工程, 2005; 26: 364)

[15] Zhou B X, Li Q, LiuWQ, YaoMY, Chu Y L. Rare Metal Mat Eng, 2006; 35: 1009

(周邦新, 李强, 刘文庆, 姚美意, 褚于良. 稀有金属材料与工程, 2006; 35: 1009)

[16] Zhou B X, Li Q, Yao M Y, Liu W Q, Chu Y L. J ASTM Intl, 2008; 5: 360
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[9] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[10] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[11] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[12] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[13] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[14] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[15] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
No Suggested Reading articles found!