Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (2): 157-162    DOI: 10.3724/SP.J.1037.2010.00390
论文 Current Issue | Archive | Adv Search |
EFFECT OF Cr ADDITION ON TRANSFORMATION AND CYCLIC DEFORMATION CHARACTERISTICS OF Ti-Ni SHAPE MEMORY ALLOY
YANG Jun1),  HE Zhirong1),  WANG Fang2),  WANG Yongshan1)
1) School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723003
2) Library, Shaanxi University of Technology, Hanzhong 723003
Cite this article: 

YANG Jun HE Zhirong WANG Fang WANG Yongshan. EFFECT OF Cr ADDITION ON TRANSFORMATION AND CYCLIC DEFORMATION CHARACTERISTICS OF Ti-Ni SHAPE MEMORY ALLOY. Acta Metall Sin, 2011, 47(2): 157-162.

Download:  PDF(1715KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The effect of Cr addition on the transformation and the cyclic deformation characteristics in 550℃ annealed Ti-50.8Ni shape memory alloy (SMA) were investigated by differential scanning calorimetry (DSC) and tensile test. The B2→R→M/M→B2 type reversiable transformation occurred in Ti-50.8Ni alloy upon cooling/heating. After the addition of 0.3%Cr in Ti-50.8Ni alloy, the transformation type for Ti-50.8Ni-0.3Cr alloy was B2→R→M/M→R→B2, and the transformation temperatures decreased significantly. At room temperature, the phase composition was parent phase B2 for both Ti-50.8Ni and Ti-50.8Ni-0.3Cr alloys, while the former showed shape memory effect; the latter showed superelasticity. With increasing cyclic deformation number n, Ti-50.8Ni alloy evolved from shape memory effect to linear superelasticity, and its stress inducing martensitic critical stress and the accumulation residual strain increased rapidly; while Ti-50.8Ni-0.3Cr alloy evolved from incomplete superelastic to complete superelastic, and the stress-strain curve shape was stable. With increasing n, the superelastic residual strain εr decreased and the superelastic strain recovery ratio ηs of Ti-50.8Ni alloy increased, while the εr and ηs in Ti-50.8Ni-0.3Cr alloy kept at lower and higher values, respectively. The superelastic of Ti-50.8-0.3Cr alloy was stable.
Key words:  Ti-Ni alloy      Ti-Ni-Cr alloy      shape memory alloy (SMA)      transformation      cycling deformation     
Received:  10 August 2010     
Fund: 

Supported by Natural Science Foundation of Shaanxi Province (No.2009JM6010) and Special Scientific Research Program Founded by Shaanxi Provincial Education Department (No.09JK375)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00390     OR     https://www.ams.org.cn/EN/Y2011/V47/I2/157

[1] Otsuka K, Wayman C M. Shape Memory Materials. Cambridge: Cambridge University Press, 1998: 220

[2] He Z R, Wang F, Zhou J E. Heat Treat Met, 2006; 31(9): 17

(贺志荣, 王芳, 周敬恩. 金属热处理, 2006; 31(9): 17)

[3] Kim J I, Miyazaki S. Metall Mater Trans, 2005; 36A: 3301

[4] He Z R, Wang F. Acta Metall Sin, 2010; 46: 329

(贺志荣, 王 芳. 金属学报, 2010; 46: 329)

[5] He Z R, Wang F, Wang Y S, Xia P J, Yang B. Acta Metall Sin, 2007; 43: 1293

(贺志荣, 王芳, 王永善, 夏鹏举, 杨波. 金属学报, 2007; 43: 1293)

[6] Liu A L, Sui J H, Lei Y C, Cai W, Gao Z Y, Zhao L C. J Mater Sci, 2007; 42: 5791

[7] Adharapurapu R R, Vecchio K S. Exp Mech, 2007; 47: 365

[8] Soga Y, Doi H, Yoneyama T. Mater Med, 2000; 11: 695

[9] Chen F. Mech Eng, 2009; 10: 21

(陈芳. 机械工程师, 2009; 10: 21)

[10] Shang Z J, Wang Z M, Yin G S, Zheng B Y. Rare Met Mater Eng, 2009; 38: 460

(商泽进, 王忠民, 尹冠生, 郑碧玉. 稀有金属材料与工程, 2009; 38: 460)

[11] Zhang X P, Liu H Y, Yuan B, Zhang Y P. Mater Sci Eng, 2008; A481: 170

[12] Carl P F, Alicia M O, Jeffrey T, Ken G, Hans J M. Metall Mater Trans, 2004; 35A: 2013

[13] Cho G B, Kim Y H, Hur S G, Yu C A, Nam T H. Met Mater Int, 2006; 12: 181

[14] He Z R, Wang F. Acta Metall Sin, 2008; 44: 23

(贺志荣, 王芳. 金属学报, 2008; 44: 23)

[15] Tahara M, Kim H Y, Hosoda H, Miyazaki S. Acta Mater, 2009; 57: 2461

[16] Miyazaki S, Imai T, Igo Y, Otsuka K. Metall Trans, 1986; 17A: 115

[17] Eucken S, Duering T W. Acta Metall, 1989; 37: 2245

[18] Zhao L C, Cai W, Zheng Y F. Shape Memory Effect and Superelasticity in Alloys. Beijing: National Defense Industry Press, 2002: 121

(赵连城, 蔡伟, 郑玉峰. 合金的形状记忆效应与超弹性. 北京:国防工业出版社, 2002: 121)
[1] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[3] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[4] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[5] JIANG Jiang, HAO Shijie, JIANG Daqiang, GUO Fangmin, REN Yang, CUI Lishan. Quasi-Linear Superelasticity Deformation in an In Situ NiTi-Nb Composite[J]. 金属学报, 2023, 59(11): 1419-1427.
[6] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[7] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
[8] SUN Yi, ZHENG Qinyuan, HU Baojia, WANG Ping, ZHENG Chengwu, LI Dianzhong. Mechanism of Dynamic Strain-Induced Ferrite Transformation in a 3Mn-0.2C Medium Mn Steel[J]. 金属学报, 2022, 58(5): 649-659.
[9] LI Wei, JIA Xingqi, JIN Xuejun. Research Progress of Microstructure Control and Strengthening Mechanism of QPT Process Advanced Steel with High Strength and Toughness[J]. 金属学报, 2022, 58(4): 444-456.
[10] CHEN Wei, CHEN Hongcan, WANG Chenchong, XU Wei, LUO Qun, LI Qian, CHOU Kuochih. Effect of Dilatational Strain Energy of Fe-C-Ni System on Martensitic Transformation[J]. 金属学报, 2022, 58(2): 175-183.
[11] YUAN Jiahua, ZHANG Qiuhong, WANG Jinliang, WANG Lingyu, WANG Chenchong, XU Wei. Synergistic Effect of Magnetic Field and Grain Size on Martensite Nucleation and Variant Selection[J]. 金属学报, 2022, 58(12): 1570-1580.
[12] YANG Ping, WANG Jinhua, MA Dandan, PANG Shufang, CUI Feng'e. Influences of Composition on the Transformation-Controlled {100} Textures in High Silicon Electrical Steels Prepared by Mn-Removal Vacuum Annealing[J]. 金属学报, 2022, 58(10): 1261-1270.
[13] LI Xueda, LI Chunyu, CAO Ning, LIN Xueqiang, SUN Jianbo. Crystallography of Reverted Austenite in the Intercritically Reheated Coarse-Grained Heat-Affected Zone of High Strength Pipeline Steel[J]. 金属学报, 2021, 57(8): 967-976.
[14] FENG Miaomiao, ZHANG Hongwei, SHAO Jingxia, LI Tie, LEI Hong, WANG Qiang. Prediction of Macrosegregation of Fe-C Peritectic Alloy Ingot Through Coupling with Thermodynamic Phase Transformation Path[J]. 金属学报, 2021, 57(8): 1057-1072.
[15] WANG Jinliang, WANG Chenchong, HUANG Minghao, HU Jun, XU Wei. The Effects and Mechanisms of Pre-Deformation with Low Strain on Temperature-Induced Martensitic Transformation[J]. 金属学报, 2021, 57(5): 575-585.
No Suggested Reading articles found!