Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (5): 581-588    DOI: 10.3724/SP.J.1037.2009.00723
论文 Current Issue | Archive | Adv Search |
INVESTIGATION OF POST-COLD ROLLING AGING PROCESSES ON SOLUTIONIZED 7050 ALUMINUM ALLOY
WANG Dong; MA Zongyi
Shenyang National Laboratory for Materials Science; Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
Download:  PDF(849KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

7050 aluminum alloy samples were subjected to 67% cold rolling (CR) deformation after solution treatment, and then were aged at 120℃. The dislocations introduced by the CR increased the strength of the samples. The strength of the sample aged at 120℃ for 4 h (CR4) increased by 12.6% compared to that of T6 sample. The strength of the 7050 samples decreased with increasing the aging time due to the coarsening of heterogeneously--nucleated precipitates. However, the strength of the sample aged at 120 ℃ for 32 h is still higher than that of the T6 sample. Furthermore, the size and particle interval of the grain boundary precipitates increased as the aging time increased. The CR4 sample was aged at 165℃ for different times. The strength of the samples decreased with increasing the aging time due to the annihilation of dislocations and the growth of the precipitates. The strength of the sample aged at 165 ℃ for 6 h is similar to that of T76 sample. In the CR4 sample aged at 135-180℃ for 1 h, the number of dislocations reduced and the size of precipitates increased with increasing the temperature, which results in a decrease in the strength of the samples.

Key words:  7050 aluminum alloy      cold rolling      aging process      mechanical property      microstructure     
Received:  02 November 2009     
Fund: 

Supported by National Basic Research Program of China (No.2005CB623708)

Corresponding Authors:  MA Zongyi     E-mail:  zyma@imr.ac.cn

Cite this article: 

WANG Dong MA Zongyi. INVESTIGATION OF POST-COLD ROLLING AGING PROCESSES ON SOLUTIONIZED 7050 ALUMINUM ALLOY. Acta Metall Sin, 2010, 46(5): 581-588.

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2009.00723     OR     https://www.ams.org.cn/EN/Y2010/V46/I5/581

[1] Hatch J E. Aluminum Properties and Physical Metallurgy, Metals Park, Ohio: American Society for Metals, 1984: 1
[2] Wagner J A, Shenoy R N. Metall Trans, 1991; 22A: 2809
[3] Dai X Y, Xia C Q, Wu A R, Wang J W, Li Y Y. Mater Rev, 2006; 20: 104
(戴晓元, 夏长清, 吴安如, 王杰文, 李杨勇. 材料导报, 2006; 20: 104)

[4] Starink M J, Wang S C. Acta Mater, 2003; 51: 5131
[5] Dumont D, Deschamps A, Brechet Y. Mater Sci Eng, 2003; A356: 326
[6] Kamp N, Sinclair I, Starink M J. Metall Mater Trans, 2002; 33A: 1125
[7] Dixit M, Mishra R S, Sankaran K K. Mater Sci Eng, 2008; A478: 163
[8] Sha G, Cerezo A. Acta Mater, 2004; 52: 4503
[9] Wang D, Ni D R, Ma Z Y. Mater Sci Eng, 2008; A494: 360
[10] Wang D, Ma Z Y. J Alloys Compd, 2009; 469: 445
[11] Deschamps A, Brechet Y, Guyot P, Livet F. Z Metallkd, 1997; 88: 601
[12] Kassim S, Rubaie A, Barroso E K L, Godefroid L B. Int J Fatigue, 2006; 28: 934
[13] Waterloo G, Hansen V, Gjonnes J, Skjervold S R. Mater Sci Eng, 2001; A303: 226
[14] Deschamps A, Livet F, Brechet Y. Acta Mater, 1999; 47: 281
[15] Lin N A, Liu Z Y, Zeng S M. Trans Nonferrous Met Soc China, 2006; 16: 1341
[16] Zhen L, Chen J Z, Yang S J, Shao W J, Dai S L. Mater Sci Eng, 2009; A504: 55
[17] Wang D, Ma Z Y, Gao Z M. Mater Chem Phys, 2009; 117: 228
[18] Hurley P J, Humphreys F J. Acta Mater, 2003; 51: 1087
[19] Ou B L, Yang J G, Wei M Y. Metall Mater Trans, 2007; 38A: 1760
[20] Nguyen D, Thompson A W, Bernstein I M. Acta Metall, 1987; 35: 2417

[1] GENG Yaoxiang, FAN Shimin, JIAN Jianglin, XU Shu, ZHANG Zhijie, JU Hongbo, YU Lihua, XU Junhua. Mechanical Properties of AlSiMg Alloy Specifically Designed for Selective Laser Melting[J]. 金属学报, 2020, 56(6): 821-830.
[2] HUANG Yuan, DU Jinlong, WANG Zumin. Progress in Research on the Alloying of Binary Immiscible Metals[J]. 金属学报, 2020, 56(6): 801-820.
[3] YU Jiaying, WANG Hua, ZHENG Weisen, HE Yanlin, WU Yurui, LI Lin. Effect of the Interface Microstructure of Hot-Dip Galvanizing High-Strength Automobile Steel on Its Tensile Fracture Behaviors[J]. 金属学报, 2020, 56(6): 863-873.
[4] ZHAO Yanchun, MAO Xuejing, LI Wensheng, SUN Hao, LI Chunling, ZHAO Pengbiao, KOU Shengzhong, Liaw Peter K.. Microstructure and Corrosion Behavior of Fe-15Mn-5Si-14Cr-0.2C Amorphous Steel[J]. 金属学报, 2020, 56(5): 715-722.
[5] YAO Xiaofei, WEI Jingpeng, LV Yukun, LI Tianye. Precipitation σ Phase Evoluation and Mechanical Properties of (CoCrFeMnNi)97.02Mo2.98 High Entropy Alloy[J]. 金属学报, 2020, 56(5): 769-775.
[6] LIANG Mengchao, CHEN Liang, ZHAO Guoqun. Effects of Artificial Ageing on Mechanical Properties and Precipitation of 2A12 Al Sheet[J]. 金属学报, 2020, 56(5): 736-744.
[7] LIU Zhenpeng, YAN Zhiqiao, CHEN Feng, WANG Shuncheng, LONG Ying, WU Yixiong. Fabrication and Performance Characterization of Cu-10Sn-xNi Alloy for Diamond Tools[J]. 金属学报, 2020, 56(5): 760-768.
[8] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Temperature on Mechanical Propertiesof Carbon Nanotubes-Reinforced Nickel Nano-Honeycombs[J]. 金属学报, 2020, 56(5): 785-794.
[9] LI Xiucheng,SUN Mingyu,ZHAO Jingxiao,WANG Xuelin,SHANG Chengjia. Quantitative Crystallographic Characterization of Boundaries in Ferrite-Bainite/Martensite Dual-Phase Steels[J]. 金属学报, 2020, 56(4): 653-660.
[10] JIANG Yi,CHENG Manlang,JIANG Haihong,ZHOU Qinglong,JIANG Meixue,JIANG Laizhu,JIANG Yiming. Microstructure and Properties of 08Cr19Mn6Ni3Cu2N (QN1803) High Strength Nitrogen Alloyed LowNickel Austenitic Stainless Steel[J]. 金属学报, 2020, 56(4): 642-652.
[11] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[12] YU Lei,LUO Haiwen. Effect of Partial Recrystallization Annealing on Magnetic Properties and Mechanical Properties of Non-Oriented Silicon Steel[J]. 金属学报, 2020, 56(3): 291-300.
[13] CAO Yuhan,WANG Lilin,WU Qingfeng,HE Feng,ZHANG Zhongming,WANG Zhijun. Partially Recrystallized Structure and Mechanical Properties of CoCrFeNiMo0.2 High-Entropy Alloy[J]. 金属学报, 2020, 56(3): 333-339.
[14] QIAN Yue,SUN Rongrong,ZHANG Wenhuai,YAO Meiyi,ZHANG Jinlong,ZHOU Bangxin,QIU Yunlong,YANG Jian,CHENG Guoguang,DONG Jianxin. Effect of Nb on Microstructure and Corrosion Resistance of Fe22Cr5Al3Mo Alloy[J]. 金属学报, 2020, 56(3): 321-332.
[15] XIAO Hong,XU Pengpeng,QI Zichen,WU Zonghe,ZHAO Yunpeng. Preparation of Steel/Aluminum Laminated Composites by Differential Temperature Rolling with Induction Heating[J]. 金属学报, 2020, 56(2): 231-239.
No Suggested Reading articles found!