Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (5): 589-594    DOI: 10.3724/SP.J.1037.2009.00802
论文 Current Issue | Archive | Adv Search |
Mg/Al REACTION AND MECHANICAL PROPERTIES OF Al ALLOY/Mg ALLOY FRICTION STIR WELDING JOINTS
WANG Dong1);  LIU Jie2);   XIAO Bolv1);  MA Zongyi1)
1) Shenyang National Laboratory for Materials Science; Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
2) Shenyang Liming Corporation; Aviation Industry Corporation of China; Shenyang 110043
Cite this article: 

WANG Dong LIU Jie XIAO Bolv MA Zongyi. Mg/Al REACTION AND MECHANICAL PROPERTIES OF Al ALLOY/Mg ALLOY FRICTION STIR WELDING JOINTS. Acta Metall Sin, 2010, 46(5): 589-594.

Download:  PDF(742KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Mg alloys are increasingly used in aerospace, aircraft and automotives structures due to the low density and good damping properties, especially, the welding of Mg alloy to Al alloys is of practical importance for widening the application of Mg alloys. Although friction stir welding (FSW) has been used to join Mg and Al alloys, defect free joints are achieved only in the thin plate (less than 4 mm). In this paper, three ways of FSW of 6 mm thick 6061--T651 Al alloy and AZ31 Mg alloy plates, offsetting the pin to the seam between the two plates (M4A4), to the Mg alloy side 2 mm (M6A2) and to the Al alloy side 2 mm (A6M2), were studied. The aim is to examine the effects of the relative position between tool and plate on the microstructure and mechanical properties of FSW Mg/Al alloys joint. SEM and XRD analyses revealed the formations of intermetallics Mg17Al12 and voids in the interface between Mg and Al alloy plates in the three FSW samples. The voids are resulted from the melting and subsequent solidification of eutectic. In the M4A4 and M6A2 samples, some Al are stirred into the Mg alloy side during FSW, forming the Mg17Al12,  whereas in the A6M2 sample, some Mg stirred into the Al alloy side are also transformed to the Mg17Al12. Some fine pores are observed around the Mg17Al12. The hardness of the nugget zone exhibits a slight increase due to the formation of a small amount of Mg17Al12. The intermetallics and pores at the jointed interface decrease the strength of the joints significantly.

Key words:  friction stir welding      dissimilar alloy welding      6061 Al alloy      AZ31 Mg alloy      microstructure     
Received:  01 December 2009     
Fund: 

Supported by National Outstanding Young Scientist Foundation (No.50525103) and Hundred Talents Program of Chinese Academy of Sciences

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2009.00802     OR     https://www.ams.org.cn/EN/Y2010/V46/I5/589

[1] Mordike B L, Ebert T. Mater Sci Eng, 2001; A302: 37
[2] Hatch J E. Aluminum Properties and Physical Metallurgy, Metals Park, Ohio: American Society for Metals, 1984: 1
[3] Liu P, Li Y J, Geng H R, Wang J. Mater Lett, 2007; 61: 1288
[4] Liu L M, Liu X J, Liu S H. Scr Mater, 2006; 55: 383
[5] Mishra R S, Ma Z Y. Mater Sci Eng, 2005; R50: 1
[6] Ren S R, Ma Z Y, Chen L Q. Acta Metall Sin, 2007; 42: 225
(任淑荣, 马宗义, 陈礼清. 金属学报, 2007; 42: 225)

[7] Xie G M, Ma Z Y, Geng L. Acta Metall Sin, 2008; 44: 655
(谢广明, 马宗义, 耿 林. 金属学报, 2008; 44: 655)

[8] Xie G M, Ma Z Y, Geng L. J Mater Sci Technol, 2009; 25: 351
[9] Khodir S A, Shibayanagi T. Mater Trans, 2007; 48: 2501
[10] Somasekharan A C, Murr L E. Mater Charact, 2004; 52: 49
[11] Yan J C, Xu Z W, Li Z Y, Li L, Yang S Q. Scr Mater, 2005; 53: 585
[12] Kostka A, Coelho R S, Santos J D, Pyzallac A R. Scr Mater, 2009; 60: 953
[13] Sato Y S, Park S H C, Michiuchi M, Kokawa H. Scr Mater, 2004; 50: 1233
[14] Chen Z W, Cui S. Scr Mater, 2008; 58: 417
[15] Prangnell P B, Heason C P. Acta Mater, 2005; 53: 3179
[16] Fatemi–Varzaneh S M, Zarei–Hanzaki A, Haghshenas M. Mater Sci Eng, 2008; A497: 438
[17] Wang Z T, Tian R Z. Handbook of Aluminum Alloy and Processing. 3rd, Changsha: Central South University Press, 2005: 317
(王祝堂, 田荣璋. 铝合金及其加工手册(第3版). 长沙: 中南大学出版社, 2005: 317)

[18] Feng A H, Ma Z Y. Scr Mater, 2007; 56: 397
[19] Mahoney M W, Rhodes C G, Flintoff J G, Spurling R A, Bingel W H. Metall Mater Trans, 1998; 29A: 1955
[20] Yang J, Xiao B L, Wang D, Ma Z Y. Mater Sci Eng, 2010; A527: 708
[21] Liu F C, Ma Z Y. Metall Mater Trans, 2008; 39A: 2378

[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[11] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[12] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[13] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[14] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[15] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
No Suggested Reading articles found!