Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (4): 494-499    DOI: 10.3724/SP.J.1037.2009.00570
论文 Current Issue | Archive | Adv Search |
INFLUENCE OF T6I6 TEMPER ON TENSILE AND INTERGRANULAR CORROSION PROPERTIES OF 6061 ALUMINUM ALLOY
LI Hai 1; PAN Daozhao 1; WANG Zhixiu 1;2; ZHENG Ziqiao 2
1. School of Materials Science and Engineering; Jiangsu Polytechnic University; Changzhou 213164
2. School of Materials Science and Engineering; Central South University; Changsha 410083
Cite this article: 

LI Hai PAN Daozhao WANG Zhixiu ZHENG Ziqiao. INFLUENCE OF T6I6 TEMPER ON TENSILE AND INTERGRANULAR CORROSION PROPERTIES OF 6061 ALUMINUM ALLOY. Acta Metall Sin, 2010, 46(4): 494-499.

Download:  PDF(1900KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

It is important to achieve a good combinization of high tensile properties and high intergranular corrosion resistance for 6000 series alloys in wider applications. In this paper, the effect of T6I6 temper on tensile and intergranular corrosion properties of 6061 aluminum alloy was investigated by tensile test, intergranular corrosion test, OM and TEM. The experimental results show that after T6 temper the ultimate strength and yield strength of 6061 alloy are 356.0 and 331.6 MPa respectively, but it has a serious tendency to intergranular corrosion sensitivity. It is found that pre–ageing time of T6I6 temper has no remarked effect on tensile properties of the alloy, but interrupted temperature and interrupted time have obvious effects on its tensile and intergranular corrosion properties. After T6I6 treatment, the tensile strength of 6061 aluminium alloy reaches its peak strength firstly and then decreases to a small value with the increase of interrupted time after pre–ageing at interrupted temperature of 150 ℃, and the corrosion mode also changes from intergranular to uniform corrosion. Higher interrupted temperature and longer interrupted time are beneficial to achieve a good combinization of tensile properties and intergranular corrosion resistance, which results from the high density of precipitates inside grains and discontinuously distributed precipitates on grain boundaries. After an optimum T6I6 treatment of 180 ℃×2 h+150 ℃×2160 h+180 ℃×8 h, the ultimate strength and yield strength are 348.5 and 326.9 MPa respectively, close to those after T6 temper. The corrosion mode is changed from the intergranular corrosion of 6061 Al alloy after T6 temper to a uniform etching with the etching depth about 30 μm.

Key words:  6061 aluminum alloy      T6I6 temper      tensile properties      intergranular corrosion     
Received:  02 September 2009     
Fund: 

Supported by National Basic Research Program of China (No.2005CB623705)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2009.00570     OR     https://www.ams.org.cn/EN/Y2010/V46/I4/494

[1] Troeger L P, Starke E A. Adv Eng Mater, 2000; 12: 802
[2] Immarigeon J P, Holt R T, Koul A K, Zhao L, Wallace W, Beddoes J C. Aircraft Appl, 1995; 35: 43
[3] Starke E A, Staley J T. Aerospace Sci, 1995; 32: 141
[4] Bhattamishra A K, Lal K Z. Metallkd, 1998; 89: 743
[5] Larsen M H, Walmsley J C, lunder O, Nisancioglu K. Mater Sci Forum, 2006; 519–521: 667
[6] Guillaumin V, Mankowski G. Corros Sci, 2000; 56: 13
[7] Chen Z Y, Lin Z J, Song W S. Corros Prot, 2001; 5: 191
(陈卓元, 林志坚, 宋文桑. 腐蚀与防护, 2001; 5: 191)
[8] Zhang Z, Song S Z, Tao L. J Chin Soc Corros Prot, 2008; 28(3): 135
(张正, 宋诗哲, 陶蕾. 中国腐蚀与防护学报, 2008; 28(3): 135)
[9] Svenningsen G, Larsen M H, Lein J E, Nordlien J H, Nisancioglu K. In: Nie J F, Morton A J, Muddle B C, eds., Proc of the 9th International Conf on Aluninium Alloys( ICAA9), Melbourne: Aust Inst Mater Eng, 2004: 818
[10] Dif R, Bechet D, Warner T, Ribes H. Proc of the 6th International Conf on Aluminium Alloys (ICCA6), Tokyo: Japan Inst Metals, 1998: 1991
[11] Lumley R N, Polmear I J. Scr Mater, 2004; 50: 1228
[12] Lumley R N, Polmear I J, Morton A J. Mater Sci Forum, 2002; 396–402: 893
[13] Buha J, Lumley R N, Crosky A G. Mater Sci Eng, 2008; A492: 1
[14] Buha J, Lumley R N, Crosky A G, Hono K. Acta Mater, 2007; 55: 3015
[15] Chen Z G, Zheng Z Q, Li J Z. Min Metall Eng, 2001; 21(4): 80
(陈志国, 郑子樵, 李竞舟. 矿冶工程, 2001; 21(4): 80)
[16] Li H, Zheng Z Q, Wang Z X. Rear Met Mater Eng, 2005; 341029
(李 海, 郑子樵, 王芝秀. 稀有金属材料与工程, 2005; 34: 1029)
[17] Li H, Zheng Z Q, Wang Z X. Rear Met Mater Eng, 2005; 34: 1230
(李 海, 郑子樵, 王芝秀. 稀有金属材料与工程, 2005; 34: 1230)
[18] Ferragut R, Dupasquier A, Macchi C E, Somoza A, Lumley R N, Polmear I J. Scr Mater, 2009; 60: 137
[19] Buha J, Lumley R N, Crosky A G. Metall Mater Trans, 2006; 10: 3120
[20] Lumley R N, Polmear I J, Morton A J. Mater Sci Forum, 2003; 426–432: 303
[21] Li H, Zheng Z Q, Wang Z X. Trans Mater Heat Treat Chin, 2004; 25(3): 57
(李海, 郑子樵, 王芝秀. 材料热处理学报, 2004; 25(3): 57)
[22] Ikeno S, Matsuda K. Mater Sci Forum, 2003; 426–462: 357
[23] Liu S A, Yuan D, Yan Q Q, Zhang H. Heat Treat Met, 2005; 30(11): 56
(刘诗安, 袁 东, 严琦琦, 张 辉. 金属热处理, 2005; 30(11): 56)
[24] Jiang H F, Lu Z, Huang M, Lu J, Wang S Q, Dai S L. Chin J Nonferrous Met, 2002; 12: 214
(姜海峰, 陆 政, 黄敏, 卢健, 王胜强, 戴圣龙. 中国有色金属学报, 2002; 12: 214)
[25] Svenningsen G, Larsen M H, Walmsley J C, Nordlien J H, Nisancioglu K. Corros Sci, 2006; 48: 1530
[26] Liu Y, Zhou X, Thompson E G, Hashimoto T, Scamans M G, Afseth A. Acta Mater, 2007; 55: 355
[27] Zhong J W, Zhou H T, Zhao Z K, Li Q B, Zhou X. Chin J Nonferrous Met, 2008; 18: 1035
(钟建伟, 周海涛, 赵仲恺, 李庆波, 周啸. 中国有色金属学报, 2008, 18: 1035)

[1] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[2] ZHENG Chun, LIU Jiabin, JIANG Laizhu, YANG Cheng, JIANG Meixue. Effect of Tensile Deformation on Microstructure and Corrosion Resistance of High Nitrogen Austenitic Stainless Steels[J]. 金属学报, 2022, 58(2): 193-205.
[3] ZHAO Wanchen, ZHENG Chen, XIAO Bin, LIU Xing, LIU Lu, YU Tongxin, LIU Yanjie, DONG Ziqiang, LIU Yi, ZHOU Ce, WU Hongsheng, LU Baokun. Composition Refinement of 6061 Aluminum Alloy Using Active Machine Learning Model Based on Bayesian Optimization Sampling[J]. 金属学报, 2021, 57(6): 797-810.
[4] Chao CAI,Yang LI,Jinfeng LI,Zhao ZHANG,Jianqing ZHANG. Correlation Between Ageing Precipitation, Potential and Intergranular Corrosion of 2A97 Al-Li Alloy Sheet[J]. 金属学报, 2019, 55(8): 958-966.
[5] Shenghu CHEN, Lijian RONG. Microstructure Evolution During Solution Treatment and Its Effects on the Properties of Ni-Fe-Cr Alloy[J]. 金属学报, 2018, 54(3): 385-392.
[6] Xiaosong ZHANG,Yong XU,Shihong ZHANG,Ming CHENG,Yonghao ZHAO,Qiaosheng TANG,Yuexia DING. Research on the Collaborative Effect of Plastic Deformation and Solution Treatment in the Intergranular Corrosion Property of Austenite Stainless Steel[J]. 金属学报, 2017, 53(3): 335-344.
[7] Xianfeng ZHANG,Guoai LI,Zheng LU,Juan YU,Min HAO. EFFECT OF PREAGED STRETCH AFTER QUENCHED ON THE PROPERTIES AND MICROSTRUCTURE OF A NATURALLY AGED Al-Li ALLOY[J]. 金属学报, 2016, 52(12): 1497-1502.
[8] Liang YANG,Shubo GAO,Yanli WANG,Teng YE,Lin SONG,Junpin LIN. EFFECT OF Si ADDITION ON THE MICROSTRUCTURE AND ROOM TEMPERATURE TENSILE PROPERTIES OF HIGH Nb-TiAl ALLOY[J]. 金属学报, 2015, 51(7): 859-865.
[9] YANG Hui, XIA Shuang, ZHANG Zilong, ZHAO Qing, LIU Tingguang, ZHOU Bangxin, BAI Qin. IMPROVING THE INTERGRANULAR CORROSION RESISTANCE OF THE WELD HEAT-AFFECTED ZONE BY GRAIN BOUNDARY ENGINEERING IN 304 AUSTENITIC STAINLESS STEEL[J]. 金属学报, 2015, 51(3): 333-340.
[10] Shaoming QIANG,Laizhu JIANG,Jin LI,Tianwei LIU,Yanping WU,Yiming JIANG. EVALUATION OF INTERGRANULAR CORROSION SUSCEPTIBILITY OF 11Cr FERRITIC STAINLESS STEEL BY DL-EPR METHOD[J]. 金属学报, 2015, 51(11): 1349-1355.
[11] LI Hai, MAO Qingzhong, WANG Zhixiu, MIAO Fenfen, FANG Bijun, SONG Renguo, ZHENG Ziqiao. EFFECT OF HIGH TEMPERATURE PRE-AGEING AND LOW-TEMPERATURE RE-AGEING ON MECHANICAL PROPERTIES AND INTERGRANULAR CORROSION SUSCEPTIBILITY OF Al-Mg-Si-Cu ALLOYS[J]. 金属学报, 2014, 50(11): 1357-1366.
[12] LI Xiangliang, CHEN Jianghua, LIU Chunhui, FENG Jiani, WANG Shihao. EFFECTS OF T6 AND T78 TEMPERS ON THE MICROSTRUCTURES AND PROPERTIES OF Al-Mg-Si-Cu ALLOYS[J]. 金属学报, 2013, 49(2): 243-250.
[13] YANG Muxin YANG Gang LIU Zhengdong Du Xiqian HUANG Chongxiang. MICROSTRUCTURES AND MECHANICAL PROPERTIES OF 0Cr13 FERRITIC STAINLESS STEEL PROCESSED BY EQUAL–CHANNEL ANGULAR PRESSING AND SUBSEQUENT ANNEALING TREATMENT[J]. 金属学报, 2012, 48(12): 1422-1430.
[14] GUO Lifang LI Xuyan SUN Tao XU Juliang LI Jin JIANG Yiming . THE INFLUENCE OF SENSITIVE TEMPERATURE ON THE LOCALIZED CORROSION RESISTANCE OF DUPLEX STAINLESS STEEL SAF2304[J]. 金属学报, 2012, 48(12): 1503-1509.
[15] yuyong chen; BaoHui Li. Microstructure-tensile properties-processing technology relationships of Ti-43Al-9V-0.3Y alloy[J]. 金属学报, 2008, 44(7): 815-820 .
No Suggested Reading articles found!