Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (2): 243-250    DOI: 10.3724/SP.J.1037.2012.00509
Current Issue | Archive | Adv Search |
EFFECTS OF T6 AND T78 TEMPERS ON THE MICROSTRUCTURES AND PROPERTIES OF Al-Mg-Si-Cu ALLOYS
LI Xiangliang, CHEN Jianghua, LIU Chunhui, FENG Jiani, WANG Shihao
College of Materials Science and Engineering, Hunan University, Changsha 410082
Cite this article: 

LI Xiangliang, CHEN Jianghua, LIU Chunhui, FENG Jiani, WANG Shihao. EFFECTS OF T6 AND T78 TEMPERS ON THE MICROSTRUCTURES AND PROPERTIES OF Al-Mg-Si-Cu ALLOYS. Acta Metall Sin, 2013, 49(2): 243-250.

Download:  PDF(3585KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Although AlMgSi (6000-series) are generally considered to have better corrosion resistance than other aluminum alloys, it may introduce susceptibility to intergranular corrosion (IGC) by some factors, for instance, improper thermo-mechanical treatment and high Cu content. So the T78 treatment has been designed to desensitize it to IGC. In this paper, effects of T6 and T78 tempers on the microstructures and properties of an Al-0.75Mg-0.75Si-0.8Cu (mass fraction, %) were investigated by hardness test, electric conductivity test,accelerated corrosion test, SEM, TEM and energy dispersive X-ray elemental mapping. The hardness and conductivity of the T6 peak-aged sample, which was obtained by artificial aging for 8 h at 180 ℃, were 128.3 HV and 27.3~106 S/m, respectively. T78 tempers involved a first step aging (180 ℃, 5 h) followed by a second step aging at 195, 205 and 215 ℃, respectively.With the prolonging of second step aging, the hardness firstly decreased then increased, while the conductivity increased gradually. The optimum T78 process was(180 ℃, 5 h)+(195 ℃, 2 h), at which condition the hardness was 129.2 HV and the electric conductivity was 27.6~106 S/m. TEM observation results show that it was mostly needle-likeβ” phase in the Al matrix for the peak-aged sample. After T78 treatment, a large amount of lath-like precipitates formed in the matrix, while the precipitate free zones (PFZ) broadened slightly. The segregation of Cu was found at the interface between lath-like precipitates and the matrix, so more Cu precipitated out from the Al matrix and thus reduced the electrochemical potential difference between the PFZ and the matrix. The above finding may explain why T78 temper can desensitize intergranular corrosion without sacrificing strength.

Key words:  aluminum alloy      precipitate      grain boundary      intergranular corrosion, microstructure     
Received:  31 August 2012     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00509     OR     https://www.ams.org.cn/EN/Y2013/V49/I2/243

[1] Chen J H, Liu C H. Trans Nonferrous Met Soc China, 2011; 21: 2352


(陈江华, 刘春辉. 中国有色金属学报, 2011; 21: 2352)

[2] Chen J H, Costan E, Van Huis M A, Xu Q, Zandbergen H W. Science, 2006; 312: 416

[3] Guinier A. Nature, 1938; 142: 570

[4] Tian N, Zhao G, Zuo L, Liu C M. Acta Metall Sin, 2010; 46: 613

(田妮, 赵刚, 左良, 刘春明. 金属学报, 2010; 46: 613)

[5] Liu Y N, Chen J H, Yin M J, Liu C H, Wu C L, Zhao X Q. J Chin Electron Microsc Soc, 2010; 29: 280

(刘亚妮, 陈江华, 尹美杰, 刘春辉, 伍翠兰, 赵新奇. 电子显微学报, 2010; 29: 280)

[6] Zhan H, Mol J M C, Hannour F, Zhuang L, Terryn H. Mater Corros, 2008; 59: 670

[7] Larsen M H, Walmsley J C, Lunder O T, Nisancioglu K. Mater Sci Forum, 2006; 519: 667

[8] Dif R, Bes B, Warner T, Lequeu P, Ribes H, Lassinccp P. Advances in the Metallurgy of Aluminum Alloys. Ohio: AMS International Publications, 2001: 390

[9] Williams J C, Starke E A. Acta Mater, 2003; 51: 5775

[10] Tanaka M, Warner T. Mater Sci Forum, 2000; 331: 983

[11] Shi A, Shaw B A, Sikora E. Corros Sci Sect, 2005; 61: 534

[12] Sinyavskii V S, Ulanova V V, Kalinin V D. Prot Met, 2004; 40: 537

[13] Liao Y F, Chen J H, Liu C H, Li X L, Feng J N. J Chin Electron Microsc Soc, 2012; 31: 116

(廖元飞, 陈江华, 刘春辉, 李祥亮, 冯佳妮. 电子显微学报, 2012; 31: 116)

[14] Vukmirovic M B, Dimitrov N, Sieradzk K. J Electrochem Soc, 2002; 149: B428

[15] Svenningsen G, Larsen M H, Walmsley J C, Nordlien J H, Nisancioglu K. Corros Sci, 2006; 48: 1528

[16] Li H , Pan D Z, Wang Z X, Zheng Z Q. Acta Metall Sin, 2010; 46: 494

(李海, 潘道召, 王芝秀, 郑子樵. 金属学报, 2010; 46: 494)

[17] Zandbergen H W, Andersen S J, Jansen J. Science, 1997; 277: 1221

[18] Marioara C D, Andersen S J, Stene T N, Hasting H, Walmsley J C, Van Heelvort A T J, Holmestad R. Philos Mag, 2007; 87: 3385

[19] Chakrabarti D J, Laughlin D E. Prog Mater Sci, 2004; 49: 389

[20] Tors{\aeter M, Lefebvre W, Marioara C D, Andersen S J, Walmsley J C, Holmestad R. Scr Mater, 2011; 64: 817

[21] Arnberg L, Aurivillius B. Acta Chem Scand Ser A, 1980; 34: 1

[22] Wang X, Esmaeili S, Lloyd D J. Metall Mater Trans, 2006; 37A: 2691

[23] Hasting H S, Walmsley J C, Van Helvoort A T J, Marioara C D, Andersen S J, Holmestad R. Philos Mag Lett, 2006; 86: 589

[24] Van Huis M A, Chen J H, Zandbergen H W, Sluiter M H F. Acta Mater, 2006; 54: 2945

[25] Esmaeili S, Vaumousse D, Zandbergen M W, Poole W J, Cerezo A, Lloyd D J. Philos Mag, 2007; 87: 3797

 
[1] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[2] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[3] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[4] LU Yuhua, WANG Haizhou, LI Dongling, FU Rui, LI Fulin, SHI Hui. A Quantitative and Statistical Method of γ' Precipitates in Superalloy Based on the High-Throughput Field Emission Scanning Eelectron Microscope[J]. 金属学报, 2023, 59(7): 841-854.
[5] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[6] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[7] YANG Du, BAI Qin, HU Yue, ZHANG Yong, LI Zhijun, JIANG Li, XIA Shuang, ZHOU Bangxin. Fractal Analysis of the Effect of Grain Boundary Character on Te-Induced Brittle Cracking in GH3535 Alloy[J]. 金属学报, 2023, 59(2): 248-256.
[8] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[9] LI Xin, JIANG He, YAO Zhihao, DONG Jianxin. Theoretical Calculation and Analysis of the Effect of Oxygen Atom on the Grain Boundary of Superalloy Matrices Ni, Co and NiCr[J]. 金属学报, 2023, 59(2): 309-318.
[10] MA Guonan, ZHU Shize, WANG Dong, XIAO Bolv, MA Zongyi. Aging Behaviors and Mechanical Properties of SiC/Al-Zn-Mg-Cu Composites[J]. 金属学报, 2023, 59(12): 1655-1664.
[11] CHEN Kaixuan, LI Zongxuan, WANG Zidong, Demange Gilles, CHEN Xiaohua, ZHANG Jiawei, WU Xuehua, Zapolsky Helena. Morphological Evolution of Fe-Rich Precipitates in a Cu-2.0Fe Alloy During Isothermal Treatment[J]. 金属学报, 2023, 59(12): 1665-1674.
[12] RUI Xiang, LI Yanfen, ZHANG Jiarong, WANG Qitao, YAN Wei, SHAN Yiyin. Microstructure and Mechanical Properties of a Novel Designed 9Cr-ODS Steel Synergically Strengthened by Nano Precipitates[J]. 金属学报, 2023, 59(12): 1590-1602.
[13] LIU Lujun, LIU Zheng, LIU Renhui, LIU Yong. Grain Boundary Structure and Coercivity Enhancement of Nd90Al10 Alloy Modified NdFeB Permanent Magnets by GBD Process[J]. 金属学报, 2023, 59(11): 1457-1465.
[14] GAO Jianbao, LI Zhicheng, LIU Jia, ZHANG Jinliang, SONG Bo, ZHANG Lijun. Current Situation and Prospect of Computationally Assisted Design in High-Performance Additive Manufactured Aluminum Alloys: A Review[J]. 金属学报, 2023, 59(1): 87-105.
[15] MA Zhimin, DENG Yunlai, LIU Jia, LIU Shengdan, LIU Honglei. Effect of Quenching Rate on Stress Corrosion Cracking Susceptibility of 7136 Aluminum Alloy[J]. 金属学报, 2022, 58(9): 1118-1128.
No Suggested Reading articles found!