Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (3): 333-340    DOI: 10.11900/0412.1961.2014.00552
Current Issue | Archive | Adv Search |
IMPROVING THE INTERGRANULAR CORROSION RESISTANCE OF THE WELD HEAT-AFFECTED ZONE BY GRAIN BOUNDARY ENGINEERING IN 304 AUSTENITIC STAINLESS STEEL
YANG Hui1, XIA Shuang1,2(), ZHANG Zilong1, ZHAO Qing1, LIU Tingguang1, ZHOU Bangxin1,2, BAI Qin1,2
1 Institute of Materials, Shanghai University, Shanghai 200072
2 Key Laboratory for Microstructure, Shanghai University, Shanghai 200444
Cite this article: 

YANG Hui, XIA Shuang, ZHANG Zilong, ZHAO Qing, LIU Tingguang, ZHOU Bangxin, BAI Qin. IMPROVING THE INTERGRANULAR CORROSION RESISTANCE OF THE WELD HEAT-AFFECTED ZONE BY GRAIN BOUNDARY ENGINEERING IN 304 AUSTENITIC STAINLESS STEEL. Acta Metall Sin, 2015, 51(3): 333-340.

Download:  HTML  PDF(7166KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The heat-affected zone (HAZ) produced by welding in stainless steel has higher susceptibility to intergranular corrosion, which is attributed to the Cr depletion induced by grain-boundary carbide-precipitation. The grain boundary engineering can be used to control over the grain boundary structure, which has significant influence on the carbide precipitation and the associated Cr depletion and hence on the susceptibility to intergranular corrosion. The grain boundary network in a 304 austenite stainless steel can be controlled by grain boundary engineering (GBE) with 5% tensile deformation and subsequent annealing at 1100 ℃ for 30 min. The total length proportion of Σ3n coincidence site lattice (CSL) boundaries was increased to more than 75%, and the large-size highly-twinned grain-cluster microstructure was formed through the treatment of GBE. Specimens were welded by gas tungsten arc-welding. Then the microstructure and the corrosion resistance of HAZ were characterized. The result showed that the high proportion of low ΣCSL boundaries and the optimum grain boundary character distribution were stable in the HAZ of the grain boundary engineered stainless steel, and the grain size was nearly the same. The weld-decay region of GBE samples performed better intergranular corrosion resistance during the intergranular corrosion immersion experiment and electrochemical potentiokinetic reactivation (EPR) test. The reported results indicated that the grain boundary engineering can effectively improve the intergranular corrosion resistance of the heat-affected zone in 304 austenitic stainless steel.

Key words:  304 austenite stainless steel      grain boundary engineering      heat-affected zone      intergranular corrosion      welding     
ZTFLH:  TG174.1  
Fund: Supported by National Basic Research Program of China (No.2011CB610502) and Shanghai Science and Technology Commission Key Support Project (No.13520500500)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00552     OR     https://www.ams.org.cn/EN/Y2015/V51/I3/333

Specimen Cold 1100 ℃ Tensile 1100 ℃
rolling annealing strain annealing
% time / min % time / min
A 50 60 - -
B 50 20 5 30
Table 1  Thermal-mechanical treatment of specimens A and B
Fig.1  Schematic of gas tungsten arc-welding (GTA-W) of specimens
Fig.2  OIM maps of different types of grain boundaries in specimens A (a) and B (b) (Large grain-clusters C1 and C2 formed in specimen B, the grain-clusters C1 and C2 enclosed by random boundary (R) consist of grains with Σ3n-orientation relationships)
Specimen Length fraction of grain boundary / % Average grain Average grain-cluster
Σ3 Σ9+Σ27 Overall low Σ size / μm size / μm
A 44.0 1.0 45.0 24.3 51.1
B 66.5 9.1 75.6 28.1 124.4
Table 2  Grain boundary character distribution and grain sizes of specimens A and B
Fig.3  Macro-views of the microstructure of welded specimens A and B after corrosion (1—weld, 2—grain-coarsened area, 3—weld-decay region, 4—base material)
Fig.4  Grain boundary character distributions presented by OIM images of different microstructures for welded specimens A (a) and B (b) (1—weld, 1-2—weld-grain-coarsened area, 3—weld-decay region, 4—base material)
Fig.5  Proportions of low ΣCSL boundaries (a) and grain size (b) of different microstructures for welded specimens A and B
Fig.6  Surface macro-views of welded specimens A (a) and B (b) after 48 h corrosion, and high magnified SEM images of weld-decay region corresponding to rectangular areas I (c) and II (d)
Fig.7  Curves of mass loss of specimens A-W and B-W in weld-decay region after corrosion
[1] Yang W D. Nuclear Reactor Materials Science. Beijing: Atomic Energy Press, 2000: 195
(杨文斗. 反应堆材料学. 北京: 原子能出版社, 2000: 195)
[2] Trillo E A, Murr L E. Acta Mater, 1998; 47: 235
[3] Zhou Y, Aust K T, Erb U, Palumbo G. Scr Mater, 2001; 45: 49
[4] Kokawa H, Shimada M, Michiuchi M, Wang Z J, Sato Y S. Acta Mater, 2007; 55: 5401
[5] Zhou Z F. Welding Metallurgy. Beijing: Mechanical Industry Press, 2001: 68
(周振丰. 焊接冶金学. 北京: 机械工业出版社, 2001: 68)
[6] Li Y J. Welding of Structural Alloy Steel and Stainless Steel. Beijing: Chemical Industry Press, 2012: 218
(李亚江. 合金结构钢及不锈钢的焊接. 北京: 化学工业出版社, 2012: 218)
[7] Watanable T. Res Mech, 1984; 11: 47
[8] Kronberg M L, Wilson F H. Trans AIME, 1949; 185: 501
[9] Randle V. Acta Mater, 2004; 52: 4067
[10] Lehockey E M, Limoges D, Palumbo G, Sklarchuk J, Tomantscher K, Vincze A. J Power Sour, 1999; 78: 79
[11] Thaveeprungsriporn V, Was G S. Metall Trans, 1997; 28: 2101
[12] Xia S, Zhou B X, Chen W J, Wang W G. Scr Mater, 2006; 54: 2019
[13] Xia S, Zhou B X, Chen W J. J Mater Sci, 2008; 43: 2990
[14] Xia S, Zhou B X, Chen W J. Metall Mater Trans, 2009; 40A: 3016
[15] Xia S, Zhou B X, Chen W J, Wang W G. Acta Metall Sin, 2006; 42: 129
(夏 爽, 周邦新, 陈文觉, 王卫国. 金属学报, 2006; 42: 129)
[16] Wang W G, Zhou B X, Feng L, Zhang X, Xia S. Acta Metall Sin, 2006; 42: 715
(王卫国, 周邦新, 冯 柳, 张 欣, 夏 爽. 金属学报, 2006; 42: 715)
[17] Hu C L, Xia S, Li H, Liu T G, Zhou B X, Chen W J. Acta Metall Sin, 2011; 47: 939
(胡长亮, 夏 爽, 李 慧, 刘廷光, 周邦新, 陈文觉. 金属学报, 2011; 47: 939)
[18] Hu C L, Xia S, Li H, Liu T G, Zhou B X, Chen W J, Wang N. Corros Sci, 2011; 53: 1880
[19] Fang X Y, Zhang K, Guo H, Wang W G, Zhou B X. Mater Sci Eng, 2008; A487: 7
[20] Shimada M, Kokawa H, Wang Z J, Sato Y S, Karibe I. Acta Mater, 2002; 50: 2331
[21] Brandon D G. Acta Mater, 1966; 14: 1479
[22] Palumbo G, Aust K T, Lehockey E M. Scr Mater, 1998; 38: 1685
[23] de Lima-Neto P, Farias J P, Abreu H F G. Corros Sci, 2008; 50: 1149
[24] Arutunow A, Darowicki K. Electrochim Acta, 2009; 54: 1034
[25] Aydodu G H, Aydinol M K. Corros Sci, 2006; 48: 3565
[26] Yu X, Chen S, Liu Y, Ren F. Corros Sci, 2010; 52: 1939
[27] Leiva-García R, Muñoz-Portero M J, García-Antón J. Corros Sci, 2009; 51: 2080
[28] Bi H Y, Kokawa H, Wang Z J. Scr Mater, 2003; 49: 21
[29] Li H, Xia S, Zhou B X, Chen W J, Hu C L. J Nucl Mater, 2010; 399: 108
[1] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[2] YANG Du, BAI Qin, HU Yue, ZHANG Yong, LI Zhijun, JIANG Li, XIA Shuang, ZHOU Bangxin. Fractal Analysis of the Effect of Grain Boundary Character on Te-Induced Brittle Cracking in GH3535 Alloy[J]. 金属学报, 2023, 59(2): 248-256.
[3] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[4] CHEN Huabin, CHEN Shanben. Key Information Perception and Control Strategy of Intellignet Welding Under Complex Scene[J]. 金属学报, 2022, 58(4): 541-550.
[5] YU Chun, XU Jijin, WEI Xiao, LU Hao. Research Status of Ductility-Dip Crack Occurring in Nuclear Nickel-Based Welding Materials[J]. 金属学报, 2022, 58(4): 529-540.
[6] ZHENG Chun, LIU Jiabin, JIANG Laizhu, YANG Cheng, JIANG Meixue. Effect of Tensile Deformation on Microstructure and Corrosion Resistance of High Nitrogen Austenitic Stainless Steels[J]. 金属学报, 2022, 58(2): 193-205.
[7] ZHU Dongming, HE Jiangli, SHI Genhao, WANG Qingfeng. Effect of Welding Heat Input on Microstructure and Impact Toughness of the Simulated CGHAZ in Q500qE Steel[J]. 金属学报, 2022, 58(12): 1581-1588.
[8] LUO Wenze, HU Long, DENG Dean. Numerical Simulation and Development of Efficient Calculation Method for Residual Stress of SUS316 Saddle Tube-Pipe Joint[J]. 金属学报, 2022, 58(10): 1334-1348.
[9] WANG Cong, ZHANG Jin. Fine-Tuning Weld Metal Compositions via Flux Optimization in Submerged Arc Welding: An Overview[J]. 金属学报, 2021, 57(9): 1126-1140.
[10] LI Zihan, XIN Jianwen, XIAO Xiao, WANG Huan, HUA Xueming, WU Dongsheng. The Arc Physical Characteristics and Molten Pool Dynamic Behaviors in Conduction Plasma Arc Welding[J]. 金属学报, 2021, 57(5): 693-702.
[11] SUN Jiaxiao, YANG Ke, WANG Qiuyu, JI Shanlin, BAO Yefeng, PAN Jie. Microstructure and Mechanical Properties of 5356 Aluminum Alloy Fabricated by TIG Arc Additive Manufacturing[J]. 金属学报, 2021, 57(5): 665-674.
[12] LI Yanmo, GUO Xiaohui, CHEN Bin, LI Peiyue, GUO Qianying, DING Ran, YU Liming, SU Yu, LI Wenya. Microstructure and Mechanical Properties of Linear Friction Welding Joint of GH4169 Alloy/S31042 Steel[J]. 金属学报, 2021, 57(3): 363-374.
[13] LI Suo, CHEN Weiqi, HU Long, DENG Dean. Influence of Strain Hardening and Annealing Effect on the Prediction of Welding Residual Stresses in a Thick-Wall 316 Stainless Steel Butt-Welded Pipe Joint[J]. 金属学报, 2021, 57(12): 1653-1666.
[14] HE Changshu, QIE Mofan, ZHANG Zhiqiang, ZHAO Xiang. Effect of Axial Ultrasonic Vibration on Metal Flow Behavior During Friction Stir Welding[J]. 金属学报, 2021, 57(12): 1614-1626.
[15] LIU Chenxi, MAO Chunliang, CUI Lei, ZHOU Xiaosheng, YU Liming, LIU Yongchang. Recent Progress in Microstructural Control and Solid-State Welding of Reduced Activation Ferritic/Martensitic Steels[J]. 金属学报, 2021, 57(11): 1521-1538.
No Suggested Reading articles found!