Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (3): 333-340    DOI: 10.11900/0412.1961.2014.00552
Current Issue | Archive | Adv Search |
IMPROVING THE INTERGRANULAR CORROSION RESISTANCE OF THE WELD HEAT-AFFECTED ZONE BY GRAIN BOUNDARY ENGINEERING IN 304 AUSTENITIC STAINLESS STEEL
YANG Hui1, XIA Shuang1, 2, ZHANG Zilong1, ZHAO Qing1, LIU Tingguang1, ZHOU Bangxin1, 2, BAI Qin1, 2
1 Institute of Materials, Shanghai University, Shanghai 200072; 2 Key Laboratory for Microstructure, Shanghai University, Shanghai 200444
Download:  HTML  PDF(7166KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The heat-affected zone (HAZ) produced by welding in stainless steel has higher susceptibility to intergranular corrosion, which is attributed to the Cr depletion induced by grain-boundary carbide-precipitation. The grain boundary engineering can be used to control over the grain boundary structure, which has significant influence on the carbide precipitation and the associated Cr depletion and hence on the susceptibility to intergranular corrosion. The grain boundary network in a 304 austenite stainless steel can be controlled by grain boundary engineering (GBE) with 5% tensile deformation and subsequent annealing at 1100 ℃ for 30 min. The total length proportion of Σ3n coincidence site lattice (CSL) boundaries was increased to more than 75%, and the large-size highly-twinned grain-cluster microstructure was formed through the treatment of GBE. Specimens were welded by gas tungsten arc-welding. Then the microstructure and the corrosion resistance of HAZ were characterized. The result showed that the high proportion of low ΣCSL boundaries and the optimum grain boundary character distribution were stable in the HAZ of the grain boundary engineered stainless steel, and the grain size was nearly the same. The weld-decay region of GBE samples performed better intergranular corrosion resistance during the intergranular corrosion immersion experiment and electrochemical potentiokinetic reactivation (EPR) test. The reported results indicated that the grain boundary engineering can effectively improve the intergranular corrosion resistance of the heat-affected zone in 304 austenitic stainless steel.
Key words:  304 austenite stainless steel      grain boundary engineering      heat-affected zone      intergranular corrosion      welding     
ZTFLH:  TG174.1  
Fund: ; Supported by National Basic Research Program of China (No.2011CB610502) and Shanghai Science and Technology Commission Key Support Project (No.13520500500)
Corresponding Authors:  Correspondent: XIA Shuang, associate professor, Tel: (021)56337934, E-mail: xs@shu.edu.cn     E-mail:  xs@shu.edu.cn

Cite this article: 

YANG Hui, XIA Shuang, ZHANG Zilong, ZHAO Qing, LIU Tingguang, ZHOU Bangxin, BAI Qin. IMPROVING THE INTERGRANULAR CORROSION RESISTANCE OF THE WELD HEAT-AFFECTED ZONE BY GRAIN BOUNDARY ENGINEERING IN 304 AUSTENITIC STAINLESS STEEL. Acta Metall Sin, 2015, 51(3): 333-340.

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00552     OR     https://www.ams.org.cn/EN/Y2015/V51/I3/333

  Schematic of gas tungsten arc-welding (GTA-W) of specimens
  OIM maps of different types of grain boundaries in specimens A (a) and B (b) (Large grain-clusters C1 and C2 formed in specimen B, the grain-clusters C1 and C2 enclosed by random boundary (R) consist of grains with Σ
  3n-orientation relationships)
  Macro-views of the microstructure of welded specimens A and B after corrosion (1—weld, 2—grain-coarsened area, 3—weld-decay region, 4—base material)
  Grain boundary character distributions presented by OIM images of different microstructures for welded specimens A (a) and B (b) (1—weld, 1-2—weld-grain-coarsened area, 3—weld-decay region, 4—base material)
  Proportions of low Σ
  CSL boundaries (a) and grain size (b) of different microstructures for welded specimens A and B
[1] Yang W D. Nuclear Reactor Materials Science. Beijing: Atomic Energy Press, 2000: 195 (杨文斗. 反应堆材料学. 北京: 原子能出版社, 2000: 195)
[2] Trillo E A, Murr L E. Acta Mater, 1998; 47: 235
[3] Zhou Y, Aust K T, Erb U, Palumbo G. Scr Mater, 2001; 45: 49
[4] Kokawa H, Shimada M, Michiuchi M, Wang Z J, Sato Y S. Acta Mater, 2007; 55: 5401
[5] Zhou Z F. Welding Metallurgy. Beijing: Mechanical Industry Press, 2001: 68 (周振丰. 焊接冶金学. 北京: 机械工业出版社, 2001: 68)
[6] Li Y J. Welding of Structural Alloy Steel and Stainless Steel. Beijing: Chemical Industry Press, 2012: 218 (李亚江. 合金结构钢及不锈钢的焊接. 北京: 化学工业出版社, 2012: 218)
[7] Watanable T. Res Mech, 1984; 11: 47
[8] Kronberg M L, Wilson F H. Trans AIME, 1949; 185: 501
[9] Randle V. Acta Mater, 2004; 52: 4067
[10] Lehockey E M, Limoges D, Palumbo G, Sklarchuk J, Tomantscher K, Vincze A. J Power Sour, 1999; 78: 79
[11] Thaveeprungsriporn V, Was G S. Metall Trans, 1997; 28: 2101
[12] Xia S, Zhou B X, Chen W J, Wang W G. Scr Mater, 2006; 54: 2019
[13] Xia S, Zhou B X, Chen W J. J Mater Sci, 2008; 43: 2990
[14] Xia S, Zhou B X, Chen W J. Metall Mater Trans, 2009; 40A: 3016
[15] Xia S, Zhou B X, Chen W J, Wang W G. Acta Metall Sin, 2006; 42: 129 (夏 爽, 周邦新, 陈文觉, 王卫国. 金属学报, 2006; 42: 129)
[16] Wang W G, Zhou B X, Feng L, Zhang X, Xia S. Acta Metall Sin, 2006; 42: 715 (王卫国, 周邦新, 冯 柳, 张 欣, 夏 爽. 金属学报, 2006; 42: 715)
[17] Hu C L, Xia S, Li H, Liu T G, Zhou B X, Chen W J. Acta Metall Sin, 2011; 47: 939 (胡长亮, 夏 爽, 李 慧, 刘廷光, 周邦新, 陈文觉. 金属学报, 2011; 47: 939)
[18] Hu C L, Xia S, Li H, Liu T G, Zhou B X, Chen W J, Wang N. Corros Sci, 2011; 53: 1880
[19] Fang X Y, Zhang K, Guo H, Wang W G, Zhou B X. Mater Sci Eng, 2008; A487: 7
[20] Shimada M, Kokawa H, Wang Z J, Sato Y S, Karibe I. Acta Mater, 2002; 50: 2331
[21] Brandon D G. Acta Mater, 1966; 14: 1479
[22] Palumbo G, Aust K T, Lehockey E M. Scr Mater, 1998; 38: 1685
[23] de Lima-Neto P, Farias J P, Abreu H F G. Corros Sci, 2008; 50: 1149
[24] Arutunow A, Darowicki K. Electrochim Acta, 2009; 54: 1034
[25] Aydodu G H, Aydinol M K. Corros Sci, 2006; 48: 3565
[26] Yu X, Chen S, Liu Y, Ren F. Corros Sci, 2010; 52: 1939
[27] Leiva-García R, Mu?oz-Portero M J, García-Antón J. Corros Sci, 2009; 51: 2080
[28] Bi H Y, Kokawa H, Wang Z J. Scr Mater, 2003; 49: 21
[29] Li H, Xia S, Zhou B X, Chen W J, Hu C L. J Nucl Mater, 2010; 399: 108
[1] LIU Yang,WANG Lei,SONG Xiu,LIANG Taosha. Microstructure and High-Temperature Deformation Behavior of Dissimilar Superalloy Welded Joint of DD407/IN718[J]. 金属学报, 2019, 55(9): 1221-1230.
[2] Peiyuan DAI,Xing HU,Shijie LU,Yifeng WANG,Dean DENG. Influence of Size Factor on Calculation Accuracy of Welding Residual Stress of Stainless Steel Pipe by 2D Axisymmetric Model[J]. 金属学报, 2019, 55(8): 1058-1066.
[3] Shan SU. Study on Vaporizing Foil Actuator Welding Process of 5A06/0Cr18Ni10Ti with Interlayer[J]. 金属学报, 2019, 55(8): 1041-1048.
[4] Chao CAI,Yang LI,Jinfeng LI,Zhao ZHANG,Jianqing ZHANG. Correlation Between Ageing Precipitation, Potential and Intergranular Corrosion of 2A97 Al-Li Alloy Sheet[J]. 金属学报, 2019, 55(8): 958-966.
[5] Suigeng DU,Man GAO,Wanting XU,Xifeng WANG. Study on Interface of Linear Friction Welded Joint Between TC11 and TC17 Titanium Alloy[J]. 金属学报, 2019, 55(7): 885-892.
[6] Hongchi MA, Cuiwei DU, Zhiyong LIU, Yong LI, Xiaogang LI. Comparative Study of Stress Corrosion Cracking Behaviors of Typical Microstructures of Weld Heat-Affected Zones of E690 High-Strength Low-Alloy Steel in SO2-Containing Marine Environment[J]. 金属学报, 2019, 55(4): 469-479.
[7] Wenqin WANG, Zhaoman WANG, Yulong LI, De WANG, Miao LI, Qing CHEN. Wear Behavior of Fe-WC/Metal Double Layer Coatings Fabricated by Resistance Seam Weld Method[J]. 金属学报, 2019, 55(4): 537-546.
[8] ZHANG Min,JIA Fang,CHENG Kangkang,LI Jie,XU Shuai,TONG Xiongwei. Influence of Quenching and Tempering on Microstructure and Properties of Welded Joints of G520 Martensitic Steel[J]. 金属学报, 2019, 55(11): 1379-1387.
[9] SHAO Yi , LI Yanmo , LIU Chenxi , YAN Zesheng , LIU Yongchang . Annealing Process Optimization of High Frequency Longitudinal Resistance Welded Low-CarbonFerritic Stainless Steel Pipe[J]. 金属学报, 2019, 55(11): 1367-1378.
[10] Chen WANG, Beibei WANG, Peng XUE, Dong WANG, Dingrui NI, Liqing CHEN, Bolü XIAO, Zongyi MA. Fatigue Behavior of Friction Stir Welded SiCp/6092Al Composite[J]. 金属学报, 2019, 55(1): 149-159.
[11] Zhe SONG, Shengchuan WU, Yanan HU, Guozheng KANG, Yanan FU, Tiqiao XIAO. The Influence of Metallurgical Pores on Fatigue Behaviors of Fusion Welded AA7020 Joints[J]. 金属学报, 2018, 54(8): 1131-1140.
[12] Yanmo LI, Chenxi LIU, Liming YU, Huijun LI, Zumin WANG, Yongchang LIU, Wenya LI. Effect of High-Temperature Ageing on Microstructure and Mechanical Properties of Linear Friction Welded S31042 Steel Joint[J]. 金属学报, 2018, 54(7): 981-990.
[13] Min ZHANG, Erlong MU, Xiaowei WANG, Ting HAN, Hailong LUO. Microstructure and Mechanical Property of the Welding Joint of TA1/Cu/ X65 Trimetallic Sheets[J]. 金属学报, 2018, 54(7): 1068-1076.
[14] Mingyue WEN, Wenchao DONG, Huiyong PANG, Shanping LU. Microstructure and Impact Toughness of Welding Heat-Affected Zones of a Fe-Cr-Ni-Mo High Strength Steel[J]. 金属学报, 2018, 54(4): 501-511.
[15] Yingkai SHAO, Yuxi WANG, Zhibin YANG, Chunyuan SHI. Plasma-MIG Hybrid Welding Hot Cracking Susceptibility of 7075 Aluminum Alloy Based on Optimum of Weld Penetration[J]. 金属学报, 2018, 54(4): 547-556.
No Suggested Reading articles found!