Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (7): 859-865    DOI: 10.11900/0412.1961.2015.00075
Current Issue | Archive | Adv Search |
EFFECT OF Si ADDITION ON THE MICROSTRUCTURE AND ROOM TEMPERATURE TENSILE PROPERTIES OF HIGH Nb-TiAl ALLOY
Liang YANG,Shubo GAO,Yanli WANG,Teng YE,Lin SONG,Junpin LIN()
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

Liang YANG,Shubo GAO,Yanli WANG,Teng YE,Lin SONG,Junpin LIN. EFFECT OF Si ADDITION ON THE MICROSTRUCTURE AND ROOM TEMPERATURE TENSILE PROPERTIES OF HIGH Nb-TiAl ALLOY. Acta Metall Sin, 2015, 51(7): 859-865.

Download:  HTML  PDF(8226KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

High Nb-TiAl alloys, which being regarded as a new generation TiAl alloy, had attracted more and more attention for their higher operating temperature and better oxidation resistance than conventional TiAl alloys. It was found that silicide particles in high Nb-TiAl alloys were Nb5Si3 rather than Ti5Si3 precipitated in TiAl alloys. In this work, the effect of Nb5Si3 phase on the microstructure and room-temperature tensile properties of high Nb-TiAl alloy was studied. The experimental results showed that the precipitation temperature of silicide was between 1000~1200 ℃. Precipitates located in the colony boundary, b(B2) segregation and between g/a2 lamella. The tensile properties of as-cast alloy with Si addition increased. Because the formation of Nb5Si3 precipitates resulted in the reduction of Nb content, which was one of b(B2) phase stable elements. Therefore, the volume fraction of b(B2) phase obviously decreased due to Si addition. However, after heat treatments, the tensile properties of Si containing high Nb-TiAl alloy gradually reduced with the increasing of heat treatment temperature. Silicide particles which precipitated along lamella leaded to generation and propagation of cracks. Moreover, silicide particles further precipitated due to tensile stress which increased the rate of crack propagation. Si addition leaded to g phase area expanded. g single-phase region formed between 1280~1300 ℃. Silicide precipitated in colony boundary resulted in bulk g+b(B2) phases, which weaken the grain boundaries. While silicide precipitated in lamella leaded to formation of secondary g lath which split the initial lamella microstructure.

Key words:  high Nb-TiAl alloy      Si alloyed      microstructure evolution      room temperature tensile properties     
Fund: Supported by National Basic Research Program of China (No.2011CB605500) and National Natural Science Foundation of China (No.51271016)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00075     OR     https://www.ams.org.cn/EN/Y2015/V51/I7/859

Sample Temperature / ℃ Time / h Aging temperature / ℃ Time / h Cooling
HT1 1000 0.5 - - Air cooling
HT2 1200 0.5 - - Air cooling
HT3 1330 0.5 - - Air cooling
HT4 1330 0.5 900 24 Furnace cooling
Table 1  Processes of heat treatments for as-cast Ti-45Al-8Nb-2Mn-0.5Si (US) alloy
Fig.1  SEM-BSE images (a, b) and EBSD images (c, d) of Ti-45Al-8Nb-2Mn (UM) alloy (a, c) and US alloy (b, d) (Inset in Fig.1b shows the high magnified image of rectangular area)
Alloy g a2 b(B2) e
UM 94.6 0.827 4.54 -
US 97.7 0.026 0.56 1.665
Table 2  Phase compositions of UM and US alloys
Fig.2  SEM-BSE images of sample HT1 (a), HT2 (b), HT3 (c) and HT4 (d) in US alloy (Inset in Fig.2b shows the high magnified image of rectangular area)
Fig.3  TEM images and SAED patterns (insets) of e2 phase (a) and e3 phase (b) in sample HT3, and HRTEM image of the e3/g interface (c) (The corresponding FFT image is shown in the lower right, the inverse FFT image of interface dislocation is shown in the upper right in Fig.3c)
Fig.4  Room temperature tensile properties of samples
Fig.5  The quasi-phase diagram of 8Nb-TiAl[25]
Fig.6  DSC curves of UM (a) and US (b) alloys
Fig.7  Secondary electron image (a) and EBSD image (b) of tensile fracture interface of sample HT2
Fig.8  SEM-BSE images of e1 precipitation in grain boundary (a), and e2 and e3 precipitations in lamella in sample HT4 (Inset in Fig.8a shows the high magnified image of rectangular area)
Fig.9  TEM image of cross lamella (rectangular area in Fig.8b) in sample HT4
[1] Kim Y W. Mater Sci Eng, 1995; A192-193: 519
[2] Loria E A. Intermetallics, 2000; 8: 1339
[3] Dimiduk D M. Mater Sci Eng, 1999; A263: 281
[4] Imayev R M, Imayev V M, Oehring M, Appel F. Intermetallics, 2007; 15: 451
[5] Yoshihara M, Miura K. Intermetallics, 1995; 3: 357
[6] Liu Z C, Lin J P, Li S J, Chen G L. Intermetallics, 2002; 10: 653
[7] Zollinger J, Witusiewicz V, Drevermann A, Daloz D, Hecht U. Int J Cast Metal Res, 2009; 22: 339
[8] Jin Y G, Wang J N, Yang J, Wang Y. Scr Mater, 2004; 51: 113
[9] Paul J D H, Appel F, Wagner R. Acta Mater, 1998; 46: 1075
[10] Beschliesser M, Chatterjee A, Lorich A, Knabl W, Kestler H, Dehm G, Clemens H. Mater Sci Eng, 2002; A329-331: 124
[11] Lin J P, Xu X J, Wang Y L, He S F, Zhang Y, Song X P, Chen G L. Intermetallics, 2007; 15: 668
[12] Huang Z W, Cong T. Intermetallics, 2010; 18: 161
[13] Wang J G, Nieh T G. Intermetallics, 2000; 8: 737
[14] Zhang W, Liu Y, Huang J S, Liu B, He Y H, Huang B Y. Rare Metal Mater Eng, 2009; 38: 1711
[15] Xu Z F, Xu X J, Lin J P, Zhang Y, Wang Y L, Lin Z, Chen G L. J Mater Eng, 2007; (9): 42 (许正芳, 徐向俊, 林均品, 张 勇, 王艳丽, 林 志, 陈国良. 材料工程, 2007; (9): 42)
[16] Hsu F Y, Wang G X, Klaar H J. Scr Metall Mater, 1995; 33: 597
[17] Gouma P I, Subramanian K, Kim Y W, Mills M J. Intermetallics, 1998; 6: 689
[18] Wunderlich W, Kremser T, Frommeyer G. Z Metallkd, 1990; 81: 802
[19] Wang G X, Dogan B, Hsu F Y, Klaar H J, Dahms M. Metall Mater Trans, 1995; 26A: 691
[20] Hornauer U, Richter E, Matz W, Reuther H, Mucklich A, Wieser E, Moller W, Schumacher G, Schutze M. Surf Coat Technol, 2000; 128-129: 418
[21] Dong L M, Cui Y Y, Yang R, Wang F H. Acta Metall Sin, 2004; 40: 383 (董利民, 崔玉友, 杨 锐, 王福会. 金属学报, 2004; 40: 383)
[22] Kim Y W, Kim S L. Intermetallics, 2014; 53: 92
[23] Karadge M, Kim Y W, Gouma P I. Metall Mater Trans, 2003; 34A: 2129
[24] Sun F S, Kim S E, Cao C X, Lee Y T, Yan M G. Scr Mater, 2001; 45: 383
[25] Chen G L, Zhang W J, Liu Z C, Li S J, Kim Y W. In: Kim Y W, Dimiduk D M, Loretto M H eds., Gamma Titanium Aluminides 1999, Warrendale, PA: TMS, 1999: 31
[26] Wang Y H, Lin J P, He Y H, Wang Y L, Chen G L. Mater Sci Eng, 2007; A471: 82
[27] Gouma P I, Karadge M. Mater Lett, 2003; 57: 3581
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[3] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[4] FANG Yuanzhi, DAI Guoqing, GUO Yanhua, SUN Zhonggang, LIU Hongbing, YUAN Qinfeng. Effect of Laser Oscillation on the Microstructure and Mechanical Properties of Laser Melting Deposition Titanium Alloys[J]. 金属学报, 2023, 59(1): 136-146.
[5] LI Zhao, JIANG He, WANG Tao, FU Shuhong, ZHANG Yong. Microstructure Evolution of GH2909 Low Expansion Superalloy During Heat Treatment[J]. 金属学报, 2022, 58(9): 1179-1188.
[6] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[7] MA Minjing, QU Yinhu, WANG Zhe, WANG Jun, DU Dan. Dynamics Evolution and Mechanical Properties of the Erosion Process of Ag-CuO Contact Materials[J]. 金属学报, 2022, 58(10): 1305-1315.
[8] XU Jinghui, LI Longfei, LIU Xingang, LI Hui, FENG Qiang. Thermal-Stress Coupling Effect on Microstructure Evolution of a Fourth-Generation Nickel-Based Single-Crystal Superalloy at 1100oC[J]. 金属学报, 2021, 57(2): 205-214.
[9] LIU Chao, YAO Zhihao, GUO Jing, PENG Zichao, JIANG He, DONG Jianxin. Microstructure Evolution Behavior of Powder Superalloy FGH4720Li at Near Service Temperature[J]. 金属学报, 2021, 57(12): 1549-1558.
[10] LIU Chenxi, MAO Chunliang, CUI Lei, ZHOU Xiaosheng, YU Liming, LIU Yongchang. Recent Progress in Microstructural Control and Solid-State Welding of Reduced Activation Ferritic/Martensitic Steels[J]. 金属学报, 2021, 57(11): 1521-1538.
[11] WU Yun, LIU Yahui, KANG Maodong, GAO Haiyan, WANG Jun, SUN Baode. Microstructure Evolution of K4169 Alloy During Cyclic Loading[J]. 金属学报, 2020, 56(9): 1185-1194.
[12] WANG Tao,WAN Zhipeng,LI Zhao,LI Peihuan,LI Xinxu,WEI Kang,ZHANG Yong. Effect of Heat Treatment Parameters on Microstructure and Hot Workability of As-Cast Fine Grain Ingot of GH4720Li Alloy[J]. 金属学报, 2020, 56(2): 182-192.
[13] JIANG He,DONG Jianxin,ZHANG Maicang,YAO Zhihao,YANG Jing. Stress Relaxation Mechanism for Typical Nickel-Based Superalloys Under Service Condition[J]. 金属学报, 2019, 55(9): 1211-1220.
[14] Yingjun GAO, Yujiang LU, Lingyi KONG, Qianqian DENG, Lilin HUANG, Zhirong LUO. Phase Field Crystal Model and Its Application for Microstructure Evolution of Materials[J]. 金属学报, 2018, 54(2): 278-292.
[15] Zongyi MA, Qiao SHANG, Dingrui NI, Bolv XIAO. Friction Stir Welding of Magnesium Alloys: A Review[J]. 金属学报, 2018, 54(11): 1597-1617.
No Suggested Reading articles found!