Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (12): 1503-1509    DOI: 10.3724/SP.J.1037.2012.00381
Current Issue | Archive | Adv Search |
THE INFLUENCE OF SENSITIVE TEMPERATURE ON THE LOCALIZED CORROSION RESISTANCE OF DUPLEX STAINLESS STEEL SAF2304
GUO Lifang 1, LI Xuyan 1, SUN Tao 1, XU Juliang 1, LI Jin 1,2, JIANG Yiming 1
1. Department of Materials Science, Fudan University, Shanghai 200433
2. State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

GUO Lifang LI Xuyan SUN Tao XU Juliang LI Jin JIANG Yiming . THE INFLUENCE OF SENSITIVE TEMPERATURE ON THE LOCALIZED CORROSION RESISTANCE OF DUPLEX STAINLESS STEEL SAF2304. Acta Metall Sin, 2012, 48(12): 1503-1509.

Download:  PDF(2103KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Duplex stainless steels (DSS), characterized by a two–phase microstructure of ferrite (α) and austenite (γ), have an attractive combination of mechanical strength and corrosion resistance in various aggressive environment. DSS SAF2304 shows wide application potential due to its lower cost compared with conventional DSS and better corrosion performance than austenite steel. However, precipitations of detrimental phases inevitably occur when DSS is heated to temperatures ranging from 300 ℃ to 1000 ℃ during manufacturing and welding procedures. These precipitations will lead to the reduction of corrosion resistance of DSS due to the presence of chromium–depleted zones around them. This work investigates the influence of sensitive temperature on the localized corrosion resistance of DSS SAF2304. The resistances to intergranular corrosion and pitting corrosion of DSS SAF2304 annealed at various temperatures ranging from 600 ℃ to 950 ℃ for 2 h were investigated by means of double loop electrochemical potentiodynamic reactivation (DL–EPR) technique in a solution of 1 mol/L H2SO4+1 mol/L HCl+0.2 mol/L NaCl at 30 ℃ with a scanning rate of 1.667 mV/s and critical pitting corrosion temperature (CPT) technique in a solution of 1 mol/L NaCl with a rising rate of 1 ℃/min, respectively. The morphologies and microstructures of the specimens after electrolytic etching in 30%KOH, oxalic acid and potassium metabisulfite were characterized by OM and SEM techniques. A same trend was observed by the different evaluating techniques, which suggested that both of the resistances of intergranular corrosion and pitting corrosion of DSS SAF2304 decreased with the annealing temperature increased from 600 ℃ to 700 ℃, while a contrary trend was found from 750 ℃ to 950 ℃. In particular, the samples annealed at 700 and 750 ℃ suffered the severest corrosion. The relationship between microstructure and localized corrosion resistance was revealed by the evolution of the microstructure, and it was found that the deterioration of the resistance to localized corrosion was due to the formation of chromium–depleted zones around the precipitation of Cr2N.

Key words:  duplex stainless steel 2304      intergranular corrosion      pitting corrosion      sensitive temperature     
Received:  28 June 2012     
ZTFLH:  TG172.8  
Fund: 

Supported by National Natural Science Foundation of China (Nos.51071049, 51134010 and 51131008)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00381     OR     https://www.ams.org.cn/EN/Y2012/V48/I12/1503

[1] Solomon H D, Devine T M. In: Lula R A ed., Proc Conf on Duplex Stainless Steels, Metals Park, Ohio: American Society for Metals, 1983: 693

[2] Olsson J O, Groth H L. Desalination, 1994; 97: 67

[3] Olsson J, Snis M. Desalination, 2007; 205: 104

[4] Zhang Z Y, Han D, Jiang Y M, Shi C, Li J. Nucl Eng Des, 2012; 243: 56

[5] Straffelini G, Baldo S, Calliari I. Metall Mater Trans, 2009; 40A: 2616

[6] Garzon C M, Ramirez A J. Acta Mater, 2006; 54: 3321

[7] Kobayashi D Y, Wolynec S. Mater Res, 1999; 2: 239

[8] Duprez L, De Cooman B, Akdut N. Steel Res, 2000; 71: 417

[9] Chen T H, Weng K L, Yang J R. Mater Sci Eng, 2002; A338: 259

[10] Wilms M E, Gadgil V J, Krougman J M, Ijsseling F P. Corros Sci, 1994; 36: 871

[11] Lopez N, Cid M, Puiggali M. Corros Sci, 1999; 41: 1615

[12] Nilsson J O. Mater Sci Technol, 1992; 8: 685

[13] King A, Johnson G, Engelberg D. Science, 2008; 321: 382

[14] Bohni H. Langmuir, 1987; 3: 924

[15] Bastos I N, Tavares S S, Dalard F, Nogueira R P. Scr Mater, 2007; 57: 913

[16] Buhler H E, Gerlach L, Greven O, Bleck W. Corros Sci, 2003; 45: 2325

[17] Lopez N, Cid M, Puiggali M, Azkarate I, Pelayo A. Mater Sci Eng, 1997; A229: 123

[18] Jin W S, Lang Y P, Rong F, Sun L J. J Chin Soc Corros Prot, 2007; 27: 54

(金维松, 郎宇平, 荣凡, 孙力军. 中国腐蚀与防护学报, 2007; 27: 54)

[19] Deng B, Jiang Y M, Gong J, Zhong C, Gao J, Li J. Electrochim Acta, 2008; 53: 5220

[20] Ovarfort R. Corros Sci, 1989; 29: 987

[21] Brigham R J, Tozer E W. Corrosion, 1973; 29: 33

[22] Moayed M H, Newman R C. Corros Sci, 2006; 48: 1004

[23] Garfias–Mesias L F, Sykes J M. Corros Sci, 1999; 41: 959

[24] Li S S. Corros Sci Technol Prot, 2000; 12: 288

(李神速. 腐蚀科学与防护技术, 2000; 12: 288)

[25] Schwind M, Kallqvist J, Nilsson J O. Acta Mater, 2000; 48: 2473

[26] Fargas G, Anglada M, Mateo A. J Mater Process Technol, 2009; 209: 1770

[27] Gao J, Jiang Y, Deng B, Ge Z, Li J. Electrochim Acta, 2010; 55: 4837

[28] Ebrahimi N, Momeni M, Moayed M H, Davoodi A. Corros Sci, 2011; 53: 637

[29] Deng B, Jiang Y, Xu J, Sun T, Gao J, Zhang L, Zhang W, Li J. Corros Sci, 2010; 52: 969

[1] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[3] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[4] SUN Yangting, LI Yiwei, WU Wenbo, JIANG Yiming, LI Jin. Effect of Inclusions on Pitting Corrosion of C70S6 Non-Quenched and Tempered Steel Doped with Ca and Mg[J]. 金属学报, 2022, 58(7): 895-904.
[5] ZHENG Chun, LIU Jiabin, JIANG Laizhu, YANG Cheng, JIANG Meixue. Effect of Tensile Deformation on Microstructure and Corrosion Resistance of High Nitrogen Austenitic Stainless Steels[J]. 金属学报, 2022, 58(2): 193-205.
[6] LV Chenxi, SUN Yangting, CHEN Bin, JIANG Yiming, LI Jin. Influence of Potentionstatic Pulse Technique on Pitting Behavior and Pitting Resistance of 317L Stainless Steel[J]. 金属学报, 2021, 57(12): 1607-1613.
[7] Chao CAI,Yang LI,Jinfeng LI,Zhao ZHANG,Jianqing ZHANG. Correlation Between Ageing Precipitation, Potential and Intergranular Corrosion of 2A97 Al-Li Alloy Sheet[J]. 金属学报, 2019, 55(8): 958-966.
[8] Kaiqiang LI, Lujia YANG, Yunze XU, Xiaona WANG, Yi HUANG. Influence of SO42- on the Corrosion Behavior of Q235B Steel Bar in Simulated Pore Solution[J]. 金属学报, 2019, 55(4): 457-468.
[9] FENG Hao,LI Huabing,LU Pengchong,YANG Chuntian,JIANG Zhouhua,WU Xiaolei. Investigation on Microbiologically Influenced Corrosion Behavior of CrCoNi Medium-Entropy Alloy byPseudomonas Aeruginosa[J]. 金属学报, 2019, 55(11): 1457-1468.
[10] Shenghu CHEN, Lijian RONG. Microstructure Evolution During Solution Treatment and Its Effects on the Properties of Ni-Fe-Cr Alloy[J]. 金属学报, 2018, 54(3): 385-392.
[11] Xiaosong ZHANG,Yong XU,Shihong ZHANG,Ming CHENG,Yonghao ZHAO,Qiaosheng TANG,Yuexia DING. Research on the Collaborative Effect of Plastic Deformation and Solution Treatment in the Intergranular Corrosion Property of Austenite Stainless Steel[J]. 金属学报, 2017, 53(3): 335-344.
[12] Xianfeng ZHANG,Guoai LI,Zheng LU,Juan YU,Min HAO. EFFECT OF PREAGED STRETCH AFTER QUENCHED ON THE PROPERTIES AND MICROSTRUCTURE OF A NATURALLY AGED Al-Li ALLOY[J]. 金属学报, 2016, 52(12): 1497-1502.
[13] Nan PIAO,Ji CHEN,Chengjiang YIN,Cheng SUN,Xinghang ZHANG,Zhanwen WU. INVESTIGATION ON PITTING CORROSION BEHAVIOR OF ULTRAFINE-GRAINED 304L STAINLESS STEEL IN Cl- CONTAINING SOLUTION[J]. 金属学报, 2015, 51(9): 1077-1084.
[14] Haiwei HUANG, Zhenbo WANG, Li LIU, Xingping YONG, Ke LU. FORMATION OF A GRADIENT NANOSTRUCTURED SURFACE LAYER ON A MARTENSITIC STAINLESS STEEL AND ITS EFFECTS ON THE ELECTRO- CHEMICAL CORROSION BEHAVIOR[J]. 金属学报, 2015, 51(5): 513-518.
[15] YANG Hui, XIA Shuang, ZHANG Zilong, ZHAO Qing, LIU Tingguang, ZHOU Bangxin, BAI Qin. IMPROVING THE INTERGRANULAR CORROSION RESISTANCE OF THE WELD HEAT-AFFECTED ZONE BY GRAIN BOUNDARY ENGINEERING IN 304 AUSTENITIC STAINLESS STEEL[J]. 金属学报, 2015, 51(3): 333-340.
No Suggested Reading articles found!