Please wait a minute...
Acta Metall Sin  2025, Vol. 61 Issue (1): 191-202    DOI: 10.11900/0412.1961.2024.00271
Research paper Current Issue | Archive | Adv Search |
Rapid Solidification Behavior and Microstructure Regulation of Ni43.5Co19Cr10Fe10Al15Ti2Mo0.5 Eutectic High-Entropy Alloy
LU Jianlin, REN Huayong, XIE An, WANG Jiantong, HE Feng()
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
Cite this article: 

LU Jianlin, REN Huayong, XIE An, WANG Jiantong, HE Feng. Rapid Solidification Behavior and Microstructure Regulation of Ni43.5Co19Cr10Fe10Al15Ti2Mo0.5 Eutectic High-Entropy Alloy. Acta Metall Sin, 2025, 61(1): 191-202.

Download:  HTML  PDF(4438KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Eutectic high-entropy alloys (EHEAs) have exhibited excellent mechanical properties. However, their rapid solidification behaviors during additive manufacturing processes still require further investigation. In the present study, Ni43.5Co19Cr10Fe10Al15Ti2Mo0.5 EHEA via copper mold casting and selective laser melting (SLM) were produced to study the influence of solidification conditions, such as cooling rate, on the phase area fraction, phase composition, grain morphology, and mechanical properties of the alloy. SEM, EBSD, TEM, and tensile testing were used to systematically analyze the solidification behaviors and mechanical properties of this EHEA. The center of the as-cast specimen has the lowest cooling rate, a large amount of fcc primary phase appears and forms equiaxed crystals, with a B2 phase area fraction of 16.9%. As the cooling rate increases, the amount of fcc primary phase decreases, and the area fraction of the B2 phase increases to 23.0% on the surface of the as-cast specimen. Meanwhile, the concentration of Al in the B2 phase of each region in the as-cast specimen is 23.2% (atomic fraction, the same below). However, with the continuous increase in the cooling rate, the area fraction of B2 phase tends to reach its lowest value in the SLM specimen, with only 15.8% in edge-on orientation, and the concentration of Al in the B2 phase decreases to 16.5%. The decrease in the area fraction of the B2 phase in SLM samples is due to solute trapping caused by the high cooling rate, resulting in the formation of a supersaturated solid solution and a reduction in the amount of liquid phase available for forming eutecticphase. In addition, during the SLM process, a high scanning rate results in a large temperature gradient, which promotes the formation of columnar crystals. Reducing the scanning rate to 500 mm/s causes a columnar-to-equiaxed transition due to the decrease in temperature gradient. The mechanical properties of the SLM specimens are superior to those of the as-cast specimens, with a room-temperature ultimate tensile strength of (1320.5 ± 4.5) MPa and a fracture elongation of (25.8 ± 2.2)%.

Key words:  eutectic high-entropy alloy      rapid solidification      selective laser melting     
Received:  14 August 2024     
ZTFLH:  TG146.1  
Fund: National Natural Science Foundation of China(52474425)
Corresponding Authors:  HE Feng, professor, Tel: 18710790457, E-mail: fenghe1991@nwpu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2024.00271     OR     https://www.ams.org.cn/EN/Y2025/V61/I1/191

Fig.1  XRD spectrum of the as-cast powder specimen
Fig.2  Low (a-c) and high (d-f) magnified OM images and EBSD phase distribution (PD) images (g-i) of different regions on as-cast specimen cross-section
(a, d, g) chill crystal zones (b, e, h) columnar zones (c, f, i) equiaxed grain zones
Fig.3  SEM images (a, d, g) and EDS analyses (b, c, e, f, h, i) of different crystal zones of the as-cast specimen (Arrows in Fig.3a, b, d, e, g, and h show the EDS line scanming directions)
(a, b, c) chill crystal zones (d, e, f) columnar zones (g, h, i) equiaxed grain zones
Fig.4  XRD spectra of the powder raw material (a) and SLM-C as-print specimen (b)
Fig.5  OM (a, b) and SEM (d, e) images and inverse pole figures (IPFs) (c, f) of the SLM-C as-print specimen (Orange areas in the cubes indicate the observation plane, the same below)
Fig.6  TEM images (a, f), selected area electron diffraction (SAED) patterns (b-d), and EDS analyses (e, g, h) of the as-print SLM-C specimen along the cross-section perpendicular to the additive direction
(d) Kurdjumov-Sachs (K-S) relation between B2 and fcc phases
(e) EDS line scanning result (g, h) EDS mappings of Al (g) and Ti (h)
Fig.7  Engineering strain-stress curves of the as-print SLM-C specimen and columnar and equiaxed grain zones of the as-cast specimen (g represents the direction of gravity. Insets are the sampling position schematics, where black and blue areas represent the sampling positions of the columnar and equiaxed grain zones in as-cast specimen, respectively; and two layers close to the upper surface represent the sampling position of as-print specimen)
Fig.8  IPF (a) and SEM image (b) of the SLM-E as print specimen and relationships between the columnar to equiaxed transition (CET) and the printing parameters in SLM-E as-print specimens (c-f)
Fig.9  Low (a) and high (b) magnified OM images of shrinkage cavity in the middle of the as-cast specimen
Fig.10  Engineering strain-stress curves (a) and OM image (b) of SLM-E as-print specimen and kernel average misorientation (KAM) images of SLM-C (c) and SLM-E (d) as-print specimens (Inset in Fig.10a is the sampling position schematic of SLM-E, where two layers close to the upper surface represent the sampling position)
1 Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys[J]. Mater. Sci. Eng., 2004, A375-377: 213
2 Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts[J]. Acta Mater., 2017, 122: 448
3 Wu Q F, He F, Li J J, et al. Phase-selective recrystallization makes eutectic high-entropy alloys ultra-ductile[J]. Nat. Commun., 2022, 13: 4697
doi: 10.1038/s41467-022-32444-4 pmid: 35948571
4 Lu Y P, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: Eutectic high-entropy alloys[J]. Sci. Rep., 2014, 4: 6200
doi: 10.1038/srep06200 pmid: 25160691
5 Lu Y P, Dong Y, Jiang H, et al. Promising properties and future trend of eutectic high entropy alloys[J]. Scr. Mater., 2020, 187: 202
6 Jia Y H, Wang Z J, Wu Q F, et al. Enhancing the yield strength of Ni-Co-Cr-Fe-Al as-cast hypoeutectic high-entropy alloys by introducing γ′ precipitation[J]. Mater. Sci. Eng., 2022, A858: 144190
7 Wu Q F, Wang Z J, Zheng T. A casting eutectic high entropy alloy with superior strength-ductility combination[J]. Mater. Lett., 2019, 253: 268
8 Lu Y P, Gao X Z, Jiang L, et al. Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range[J]. Acta Mater., 2017, 124: 143
9 John R, Karati A, Joseph J, et al. Microstructure and mechanical properties of a high entropy alloy with a eutectic composition (AlCoCrFeNi2.1) synthesized by mechanical alloying and spark plasma sintering[J]. J. Alloys Compd., 2020, 835: 155424
10 DebRoy T, Wei H L, Zuback J S, et al. Additive manufacturing of metallic components—Process, structure and properties[J]. Prog. Mater. Sci., 2018, 92: 112
11 Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals[J]. Acta Mater., 2016, 117: 371
12 Gorsse S, Hutchinson C, Gouné M, et al. Additive manufacturing of metals: A brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys[J]. Sci. Technol. Adv. Mater., 2017, 18: 584
13 Sistla H R, Newkirk J W, Frank Liou F. Effect of Al/Ni ratio, heat treatment on phase transformations and microstructure of Al x FeCoCrNi2 - x (x = 0.3, 1) high entropy alloys[J]. Mater. Des., 2015, 81: 113
14 Chai Z S, Zhou K X, Wu Q F, et al. Deformation behaviors of an additive-manufactured Ni32Co30Cr10Fe10Al18 eutectic high entropy alloy at ambient and elevated temperatures[J]. Acta Metall. Sin. (Engl. Lett.), 2022, 35: 1607
15 Zhou K X, Li J J, Wu Q F, et al. Remelting induced fully-equiaxed microstructures with anomalous eutectics in the additive manufactured Ni32Co30Cr10Fe10Al18 eutectic high-entropy alloy[J]. Scr. Mater., 2021, 201: 113952
16 Alamoudi M T, Wiezorek J M K. Probing effects of solute trapping on the mechanical properties of α-Al in rapidly solidified hypoeutectic Al-10at.%Cu after surface laser melting[J]. Mater. Sci. Eng., 2024, A890: 145934
17 Wang Y M, Voisin T, McKeown J T, et al. Additively manufactured hierarchical stainless steels with high strength and ductility[J]. Nat. Mater., 2018, 17: 63
doi: 10.1038/nmat5021 pmid: 29115290
18 Zhang K Q, Chen C Y, Xu S Z, et al. On the microstructure evolution and strengthening mechanism of GH4099 Ni-based superalloy fabricated by laser powder bed fusion[J]. Mater. Today Commun., 2024, 40: 109734
19 Kim J G, Seol J B, Park J M, et al. Effects of cell network structure on the strength of additively manufactured stainless steels[J]. Met. Mater. Int., 2021, 27: 2614
20 Li S H, Zhao Y K, Ramamurty U. Role of the solidification cells on the yield strength of the Al-Si-Mg alloy manufactured using laser powder bed fusion: A micropillar compression study[J]. Scr. Mater., 2023, 234: 115566
21 Geng Z W, Chen C, Song M, et al. High strength Al0.7CoCrFeNi2.4 hypereutectic high entropy alloy fabricated by laser powder bed fusion via triple-nanoprecipitation[J]. J. Mater. Sci. Technol., 2024, 187: 141
22 Kumar P, Huang S, Cook D H, et al. A strong fracture-resistant high-entropy alloy with nano-bridged honeycomb microstructure intrinsically toughened by 3D-printing[J]. Nat. Commun., 2024, 15: 841
doi: 10.1038/s41467-024-45178-2 pmid: 38286856
23 Trivedi R, Magnin P, Kurz W. Theory of eutectic growth under rapid solidification conditions[J]. Acta Metall., 1987, 35: 971
24 Zimmermann M, Carrard M, Kurz W. Rapid solidification of Al-Cu eutectic alloy by laser remelting[J]. Acta Metall., 1989, 37: 3305
25 Schempp P, Rethmeier M. Understanding grain refinement in aluminium welding: Henry Granjon Prize 2015 winner category B: Materials behaviour and weldability[J]. Weld. World, 2015, 59: 767
26 Qi X, Takata N, Suzuki A, et al. Laser powder bed fusion of a near-eutectic Al-Fe binary alloy: Processing and microstructure[J]. Addit. Manuf., 2020, 35: 101308
27 Kozieł T. Estimation of cooling rates in suction casting and copper-mould casting processes[J]. Arch. Metall. Mater., 2015, 60: 767
28 Wang W L, Liu W Q, Yang X, et al. Multi-scale simulation of columnar-to-equiaxed transition during laser selective melting of rare earth magnesium alloy[J]. J. Mater. Sci. Technol., 2022, 119: 11
doi: 10.1016/j.jmst.2021.12.029
29 Li Y L, Gu D D. Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder[J]. Mater. Des., 2014, 63: 856
30 Hornung J, Zikin A, Pichelbauer K, et al. Influence of cooling speed on the microstructure and wear behaviour of hypereutectic Fe-Cr-C hardfacings[J]. Mater. Sci. Eng., 2013, A576: 243
31 Behera S K, Van Hoogstraten J, Rane K K, et al. The effect of cooling rate on the microstructure and physical properties of hypereutectic Al-Ce alloys[J]. Int. J. Met., 2024, 18: 6
32 Ao X H, Xia H X, Liu J H, et al. Simulations of microstructure coupling with moving molten pool by selective laser melting using a cellular automaton[J]. Mater. Des., 2020, 185: 108230
33 Antillon E A, Hareland C A, Voorhees P W. Solute trapping and solute drag during non-equilibrium solidification of Fe-Cr alloys[J]. Acta Mater., 2023, 248: 118769
34 Gäumann M, Henry S, Cléton F, et al. Epitaxial laser metal forming: Analysis of microstructure formation[J]. Mater. Sci. Eng., 1999, A271: 232
35 Yang K V, Shi Y J, Palm F, et al. Columnar to equiaxed transition in Al-Mg(-Sc)-Zr alloys produced by selective laser melting[J]. Scr. Mater., 2018, 145: 113
36 Li H G, Huang Y J, Jiang S S, et al. Columnar to equiaxed transition in additively manufactured CoCrFeMnNi high entropy alloy[J]. Mater. Des., 2021, 197: 109262
37 Bermingham M J, StJohn D H, Krynen J, et al. Promoting the columnar to equiaxed transition and grain refinement of titanium alloys during additive manufacturing[J]. Acta Mater., 2019, 168: 261
doi: 10.1016/j.actamat.2019.02.020
38 Kurz W, Bezençon C, Gäumann M. Columnar to equiaxed transition in solidification processing[J]. Sci. Technol. Adv. Mater., 2001, 2: 185
39 Zhang G H, Lu X F, Li J Q, et al. In-situ grain structure control in directed energy deposition of Ti6Al4V[J]. Addit. Manuf., 2022, 55: 102865
40 Tan X P, Kok Y, Tan Y J, et al. Graded microstructure and mechanical properties of additive manufactured Ti-6Al-4V via electron beam melting[J]. Acta Mater., 2015, 97: 1
41 Liu Z Y, Zhao D D, Wang P, et al. Additive manufacturing of metals: Microstructure evolution and multistage control[J]. J. Mater. Sci. Technol., 2022, 100: 224
doi: 10.1016/j.jmst.2021.06.011
42 Huang Y Z, Fleming T G, Clark S J, et al. Keyhole fluctuation and pore formation mechanisms during laser powder bed fusion additive manufacturing[J]. Nat. Commun., 2022, 13: 1170
doi: 10.1038/s41467-022-28694-x pmid: 35246522
43 Wang L, Zhang Y M, Chia H Y, et al. Mechanism of keyhole pore formation in metal additive manufacturing[J]. npj Comput. Mater., 2022, 8: 22
44 Liu J G, Wen P. Metal vaporization and its influence during laser powder bed fusion process[J]. Mater. Des., 2022, 215: 110505
45 Guo L P, Wang H Z, Liu H J, et al. Understanding keyhole induced-porosities in laser powder bed fusion of aluminum and elimination strategy[J]. Int. J. Mach. Tools Manuf., 2023, 184: 103977
[1] WANG Zhijun, BAI Xiaoyu, WANG Jianbin, JIANG Hui, JIAO Wenna, LI Tianxin, LU Yiping. Revisiting the Development of Eutectic High-Entropy Alloys over the Past Decade (2014-2024): Design, Manufacturing, and Applications[J]. 金属学报, 2025, 61(1): 1-11.
[2] HAN Ying, WU Yuhang, ZHAO Chunlu, ZHANG Jingshi, LI Zhenmin, RAN Xu. High-Temperature Creep Behavior of Selective Laser Melting Manufactured Al-Si-Fe-Mn-Ni Alloy[J]. 金属学报, 2025, 61(1): 154-164.
[3] WANG Yeqing, FU Ke, ZHAO Yongzhu, SU Liji, CHEN Zheng. Non-Equilibrium Solidification Behavior and Microstructure Evolution of Undercooled Fe7(CoNiMn)80B13 Eutectic High-Entropy Alloy[J]. 金属学报, 2025, 61(1): 143-153.
[4] CAI Xuanming, ZHANG Wei, FAN Zhiqiang, GAO Yubo, WANG Junyuan, ZHANG Zhujun. Damage Modes and Response Mechanisms of AlSi10Mg Porous Structures Under Different Loading Strain Rates[J]. 金属学报, 2024, 60(7): 857-868.
[5] ZHANG Nan, ZHANG Haiwu, WANG Miaohui. Tensile Mechanical Properties of Micro-Selective Laser Melted 316L Stainless Steel[J]. 金属学报, 2024, 60(2): 211-219.
[6] ZHANG Zhenwu, LI Jikang, XU Wenhe, SHEN Muyu, QI Leiyi, ZHENG Keying, LI Wei, WEI Qingsong. Effects of Overlapping Process on Grain Orientation and Microstructure of Nickel-Based Single-Crystal Superalloy DD491 Fabricated by Selective Laser Melting[J]. 金属学报, 2024, 60(11): 1471-1486.
[7] TANG Xu, ZHANG Hao, XUE Peng, WU Lihui, LIU Fengchao, ZHU Zhengwang, NI Dingrui, XIAO Bolv, MA Zongyi. Microstructure and Mechanical Properties of As-Cast and Laser Powder Bed Fused AlCoCrFeNi2.1 Eutectic High-Entropy Alloy[J]. 金属学报, 2024, 60(11): 1461-1470.
[8] CHEN Yuyong, SHI Guohao, DU Zhiming, ZHANG Yu, CHANG Shuai. Research Progress on Additive Manufacturing TiAl Alloy[J]. 金属学报, 2024, 60(1): 1-15.
[9] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[10] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[11] TANG Weineng, MO Ning, HOU Juan. Research Progress of Additively Manufactured Magnesium Alloys: A Review[J]. 金属学报, 2023, 59(2): 205-225.
[12] HU Wenbin, ZHANG Xiaowen, SONG Longfei, LIAO Bokai, WAN Shan, KANG Lei, GUO Xingpeng. Corrosion Behavior of AlCoCrFeNi2.1 Eutectic High-Entropy Alloy in Sulfuric Acid Solution[J]. 金属学报, 2023, 59(12): 1644-1654.
[13] QI Zhao, WANG Bin, ZHANG Peng, LIU Rui, ZHANG Zhenjun, ZHANG Zhefeng. Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects[J]. 金属学报, 2023, 59(10): 1411-1418.
[14] LU Haifei, LV Jiming, LUO Kaiyu, LU Jinzhong. Microstructure and Mechanical Properties of Ti6Al4V Alloy by Laser Integrated Additive Manufacturing with Alternately Thermal/Mechanical Effects[J]. 金属学报, 2023, 59(1): 125-135.
[15] ZHU Guoliang, KONG Decheng, ZHOU Wenzhe, HE Jian, DONG Anping, SHU Da, SUN Baode. Research Progress on the Crack Formation Mechanism and Cracking-Free Design of γ' Phase Strengthened Nickel-Based Superalloys Fabricated by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 16-30.
No Suggested Reading articles found!