Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (1): 16-30    DOI: 10.11900/0412.1961.2022.00434
Overview Current Issue | Archive | Adv Search |
Research Progress on the Crack Formation Mechanism and Cracking-Free Design of γ' Phase Strengthened Nickel-Based Superalloys Fabricated by Selective Laser Melting
ZHU Guoliang1,2(), KONG Decheng1,2, ZHOU Wenzhe1,2, HE Jian1,2, DONG Anping1,2, SHU Da1,2, SUN Baode1,2
1.Shanghai Key Laboratory of Advanced High Temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2.State Key Laboratory of Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, China
Cite this article: 

ZHU Guoliang, KONG Decheng, ZHOU Wenzhe, HE Jian, DONG Anping, SHU Da, SUN Baode. Research Progress on the Crack Formation Mechanism and Cracking-Free Design of γ' Phase Strengthened Nickel-Based Superalloys Fabricated by Selective Laser Melting. Acta Metall Sin, 2023, 59(1): 16-30.

Download:  HTML  PDF(4052KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Traditional high-strength nickel-based superalloys have a wide solidification temperature range and high proportion of low melting point eutectic phases, which are prone to cracking during rapid nonequilibrium solidification. The residual stress release and rapid nucleation of γ' precipitate during the post-heat treatment process result in crack formation for high-strength nickel-based superalloys, which limits their application and promotion in the field of additive manufacturing. In this review, the research progress in crack formation mechanism and cracking-free design (printing parameter optimization, post-treatment regulation, and alloying design) of high-strength nickel-based superalloys fabricated via additive manufacturing is presented. Additionally, research prospects related to crack control of additively manufactured high-strength nickel-based superalloys are proposed.

Key words:  selective laser melting      high-strength nickel-based superalloy      crack      cracking-free design     
Received:  01 September 2022     
ZTFLH:  TG146.15  
Fund: China Postdoctoral Science Foundation(2022TQ0203)
About author:  ZHU Guoliang, professor, Tel: 13472640289, E-mail: glzhu@sjtu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00434     OR     https://www.ams.org.cn/EN/Y2023/V59/I1/16

Fig.1  Relationship between the weldability (cracking sensitivity) and alloying elements in nickel-based superalloys
(a) Al and Ti elements[9] (b) Al, Ti, Cr, and Co elements[11]
Fig.2  Typical cracking morphologies in selective laser melted CM247LC high-strength nickel-based superalloy (Red rectangle regions indicate the enlarged regions)[22]
(a1-a3) solidification cracks (b1-b3) liquidation cracks (c1-c3) solid cracks
Fig.3  Atom probe reconstruction from a random high angle grain boundary in the cracked columnar region of a non-weldable nickel-based superalloy with high aluminum and titanium content (a), one-dimensional composition profiles across the γ'/GB/γ interface as denoted by arrow 1 in Fig.3a (b, c) (GB—grain boundary)[29]
Fig.4  Temperature and time relationship of heat treatment cracking of nickel-based superalloys with different precipitate types (t—time) (a)[41], statistics of crack density after 2 h heat-treatment at different temperatures for selective laser melted CM247LC alloy (b)[42], high temperature plasticizing crack at grain boundary (c)[42], and strain-aged crack (d)[42]
Fig.5  Schematic of residual stress distribution and formation mechanism during selective laser melting (HAZ—heat-affected zone) (a), residual stress distribution on the bulk sample before and after removed from the substrate (b)[51]
Fig.6  Relationship between forming quality and scan velocity for CM247LC (a)[55] and scanning strategy for IN738LC (Insets show the corresponding defects such as cracks and voids) (b)[56] fabricated by selective laser melting
Fig.7  Calculated thermal history (temperature profiles, heating and cooling rates) versus time of the same point under the continuous-wave (a) and pulsed-wave modes (b), and the defect of the selective laser melted IN738LC alloys fabricated under the continuous-wave (c) and pulsed-wave mode (d)[57] (Tmax is the maximum temperature of the molten pool, dTdtmin is minimum cooling rate)
Fig.8  Bottom cracking of samples with different sample heights (h) before and after preheating (a)[60], effect of substrate preheating temperature on crack density and residual stress of high-strength nickel-based superalloy (b)[51]
Fig.9  Morphological characteristics of cracks in the additive manufacturing samples before (a) and after (b) hot isostatic pressing[66], distribution of crack defects on the surface of the samples before (c) and after (d) hot isostatic pressing (Inset in Fig.9d shows the locally enlarged view)[55]
Fig.10  Comparisons of cracks (a, b) and elemental distributions at cracks and grain boundaries (c, d) of IN738LC alloy fabricated by selective laser melting before (a, c) and after (b, d) addition of second phase carbides[69] (BD—building direction, LPBF—laser powder bed fusion. Insets in Figs.10a and b show the locally enlarged views)
Fig.11  Design of crack-free nickel-based superalloys produced by additive manufacturing
(a) solidification temperature range and γ' phase content[22]
(b) solidification temperature range and creep life[22]
(c) solidification temperature range and strain aging crack factor[22]
(d) property design comparison of nickel-based superalloys fabricated by additive manufacturing (OAC—oxidation-assisted cracking)[80]
1 Tang H B, Wu Y, Zhang S Q, et al. Research status and development trend of high performance large metallic components by laser additive manufacturing technique [J]. J. Netshape Form. Eng., 2019, 11(4): 58
汤海波, 吴 宇, 张述泉 等. 高性能大型金属构件激光增材制造技术研究现状与发展趋势 [J]. 精密成形工程, 2019, 11(4): 58
2 Li A, Liu X F, Yu B, et al. Key factors and developmental directions with regard to metal additive manufacturing [J]. Chin. J. Eng., 2019, 41: 159
李 昂, 刘雪峰, 俞 波 等. 金属增材制造技术的关键因素及发展方向 [J]. 工程科学学报, 2019, 41: 159
3 Zhang A F, Li D C, Liang S D, et al. Development of laser additive manufacturing of high-performance metal parts [J]. Aeronaut. Manuf. Technol., 2016, (22): 16
张安峰, 李涤尘, 梁少端 等. 高性能金属零件激光增材制造技术研究进展 [J]. 航空制造技术, 2016, (22): 16
4 Reed R C. The Superalloys: Fundamentals and Applications[M]. Cambridge: Cambridge University Press, 2008: 1
5 Panwisawas C, Tang Y T, Reed R C. Metal 3D printing as a disruptive technology for superalloys [J]. Nat. Commun., 2020, 11: 2327
doi: 10.1038/s41467-020-16188-7 pmid: 32393778
6 Guo B J, Zhang Y S, Yang Z S, et al. Cracking mechanism of Hastelloy X superalloy during directed energy deposition additive manufacturing [J]. Addit. Manuf., 2022, 55: 102792
7 Harrison N J, Todd I, Mumtaz K. Reduction of micro-cracking in nickel superalloys processed by selective laser melting: A fundamental alloy design approach [J]. Acta Mater., 2015, 94: 59
doi: 10.1016/j.actamat.2015.04.035
8 Li C, Liu Z Y, Fang X Y, et al. Residual stress in metal additive manufacturing [J]. Procedia CIRP, 2018, 71: 348
doi: 10.1016/j.procir.2018.05.039
9 Xu J H. Alloy design and characterization of γ′ strengthened nickel-based superalloys for additive manufacturing [D]. Linköping University, 2021
10 Attallah M M, Jennings R, Wang X Q, et al. Additive manufacturing of Ni-based superalloys: The outstanding issues [J]. MRS Bull., 2016, 41: 758
doi: 10.1557/mrs.2016.211
11 Basak A, Das S. Additive manufacturing of nickel‐base superalloy René N5 through scanning laser epitaxy (SLE)—Material processing, microstructures, and microhardness properties [J]. Adv. Eng. Mater., 2017, 19: 1600690
doi: 10.1002/adem.201600690
12 Griffiths S, Tabasi H G, Ivas T, et al. Combining alloy and process modification for micro-crack mitigation in an additively manufactured Ni-base superalloy [J]. Addit. Manuf., 2020, 36: 101443
13 Chandra S, Tan X P, Narayan R L, et al. A generalised hot cracking criterion for nickel-based superalloys additively manufactured by electron beam melting [J]. Addit. Manuf., 2021, 37: 101633
14 Han Q Q, Gu Y C, Setchi R, et al. Additive manufacturing of high-strength crack-free Ni-based Hastelloy X superalloy [J]. Addit. Manuf., 2019, 30: 100919
15 Ghoussoub J N, Tang Y T, Panwisawas C, et al. On the influence of alloy chemistry and processing conditions on additive manufacturability of Ni-based superalloys [A]. Superalloys 2020 [M]. Cham: Springer, 2020: 153
16 Liang Y J, Cheng X, Wang H M. A new microsegregation model for rapid solidification multicomponent alloys and its application to single-crystal nickel-base superalloys of laser rapid directional solidification [J]. Acta Mater., 2016, 118: 17
doi: 10.1016/j.actamat.2016.07.008
17 Keller T, Lindwall G, Ghosh S, et al. Application of finite element, phase-field, and CALPHAD-based methods to additive manufacturing of Ni-based superalloys [J]. Acta Mater., 2017, 139: 244
doi: 10.1016/j.actamat.2017.05.003 pmid: 29230094
18 Sun X F, Song W, Liang J J, et al. Research and development in materials and processes of superalloy fabricated by laser additive manufacturing [J]. Acta Metall. Sin., 2021, 57: 1471
doi: 10.11900/0412.1961.2021.00371
孙晓峰, 宋 巍, 梁静静 等. 激光增材制造高温合金材料与工艺研究进展 [J]. 金属学报, 2021, 57: 1471
doi: 10.11900/0412.1961.2021.00371
19 Qiao S, Zhou W Z, Tan Q B, et al. Research progress of additive manufacturing of CM247LC nickel-based superalloy [J]. J. Netshape Form. Eng., 2022, 48(8): 93
乔 绅, 周文哲, 谭庆彪 等. 镍基高温合金CM247LC增材制造研究进展 [J]. 精密成形工程, 2022, 48(8): 93
20 Zhou Y Z, Volek A. Effect of carbon additions on hot tearing of a second generation nickel-base superalloy [J]. Mater. Sci. Eng., 2008, A479: 324
21 Engeli R, Etter T, Hövel S, et al. Processability of different IN738LC powder batches by selective laser melting [J]. J. Mater. Process. Technol., 2016, 229: 484
doi: 10.1016/j.jmatprotec.2015.09.046
22 Tang Y T, Panwisawas C, Ghoussoub J N, et al. Alloys-by-design: Application to new superalloys for additive manufacturing [J]. Acta Mater., 2021, 202: 417
doi: 10.1016/j.actamat.2020.09.023
23 Zhao Y S, Zhang J, Luo Y S, et al. Improvement of grain boundary tolerance by minor additions of Hf and B in a second generation single crystal superalloy [J]. Acta Mater., 2019, 176: 109
doi: 10.1016/j.actamat.2019.06.054
24 Grodzki J, Hartmann N, Rettig R, et al. Effect of B, Zr, and C on hot tearing of a directionally solidified nickel-based superalloy [J]. Metall. Mater. Trans., 2016, 47A: 2914
25 Kontis P, Yusof H A M, Pedrazzini S, et al. On the effect of boron on grain boundary character in a new polycrystalline superalloy [J]. Acta Mater., 2016, 103: 688
doi: 10.1016/j.actamat.2015.10.006
26 Gruber H, Hryha E, Lindgren K, et al. The effect of boron and zirconium on the microcracking susceptibility of IN-738LC derivatives in laser powder bed fusion [J]. Appl. Surf. Sci., 2022, 573: 151541
doi: 10.1016/j.apsusc.2021.151541
27 Li Q G, Lin X, Wang X H, et al. Research progress on cracking mechanism and control of laser additive repaired nickel-based superalloys with high content of Al + Ti [J]. Appl. Laser, 2016, 36: 471
李秋歌, 林 鑫, 王杏华 等. 高Al+Ti镍基高温合金激光增材修复液化裂纹形成机理及控制研究进展 [J]. 应用激光, 2016, 36: 471
28 Wang X J, Liu L, Huang T W, et al. Grain boundary precipitation behavior in Re-containing nickel-based directionally solidified superalloys with carbon and boron additions [J]. Vacuum, 2020, 179: 109483
doi: 10.1016/j.vacuum.2020.109483
29 Kontis P, Chauvet E, Peng Z R, et al. Atomic-scale grain boundary engineering to overcome hot-cracking in additively-manufactured superalloys [J]. Acta Mater., 2019, 177: 209
doi: 10.1016/j.actamat.2019.07.041
30 Ojo O A, Richards N L, Chaturvedi M C. Contribution of constitutional liquation of gamma prime precipitate to weld HAZ cracking of cast Inconel 738 superalloy [J]. Scr. Mater., 2004, 50: 641
doi: 10.1016/j.scriptamat.2003.11.025
31 Lu N N, Lei Z L, Hu K, et al. Hot cracking behavior and mechanism of a third-generation Ni-based single-crystal superalloy during directed energy deposition [J]. Addit. Manuf., 2020, 34: 101228
32 Divya V D, Muñoz-Moreno R, Messé O M D M, et al. Microstructure of selective laser melted CM247LC nickel-based superalloy and its evolution through heat treatment [J]. Mater. Charact., 2016, 114: 62
doi: 10.1016/j.matchar.2016.02.004
33 Acharya R, Das S. Additive manufacturing of IN100 superalloy through scanning laser epitaxy for turbine engine hot-section component repair: Process development, modeling, microstructural characterization, and process control [J]. Metall. Mater. Trans., 2015, 46A: 3864
34 Roy I, Balikci E, Ibekwe S, et al. Precipitate growth activation energy requirements in the duplex size γ′ distribution in the superalloy IN738LC [J]. J. Mater. Sci., 2005, 40: 6207
doi: 10.1007/s10853-005-3154-6
35 Kontis P, Collins D M, Wilkinson A J, et al. Microstructural degradation of polycrystalline superalloys from oxidized carbides and implications on crack initiation [J]. Scr. Mater., 2018, 147: 59
doi: 10.1016/j.scriptamat.2017.12.028
36 Cloots M, Uggowitzer P J, Wegener K. Investigations on the microstructure and crack formation of IN738LC samples processed by selective laser melting using Gaussian and doughnut profiles [J]. Mater. Des., 2016, 89: 770
doi: 10.1016/j.matdes.2015.10.027
37 Heydari D, Fard A S, Bakhshi A, et al. Hot tearing in polycrystalline Ni-based IN738LC superalloy: Influence of Zr content [J]. J. Mater. Process. Technol., 2014, 214: 681
doi: 10.1016/j.jmatprotec.2013.10.001
38 Bidron G, Doghri A, Malot T, et al. Reduction of the hot cracking sensitivity of CM-247LC superalloy processed by laser cladding using induction preheating [J]. J. Mater. Process. Technol., 2020, 277: 116461
doi: 10.1016/j.jmatprotec.2019.116461
39 Lei Y C, Aoyagi K, Aota K, et al. Critical factor triggering grain boundary cracking in non-weldable superalloy Alloy713ELC fabricated with selective electron beam melting [J]. Acta Mater., 2021, 208: 116695
doi: 10.1016/j.actamat.2021.116695
40 Messé O M D M, Muñoz-Moreno R, Illston T, et al. Metastable carbides and their impact on recrystallisation in IN738LC processed by selective laser melting [J]. Addit. Manuf., 2018, 22: 394
41 Lippold J C, Kiser S D, DuPont J N. Welding metallurgy and weldability of nickel-base alloys[M]. New Jersey: John Wiley & Sons, 2011: 1
42 Boswell J H, Clark D, Li W, et al. Cracking during thermal post-processing of laser powder bed fabricated CM247LC Ni-superalloy [J]. Mater. Des., 2019, 174: 107793
doi: 10.1016/j.matdes.2019.107793
43 Xu J J, Lin X, Guo P F, et al. The initiation and propagation mechanism of the overlapping zone cracking during laser solid forming of IN-738LC superalloy [J]. J. Alloys Compd., 2018, 749: 859
doi: 10.1016/j.jallcom.2018.03.366
44 Xu Y L, Jin Q M, Xiao X S, et al. Strengthening mechanisms of carbon in modified nickel-based superalloy Nimonic 80A [J]. Mater. Sci. Eng., 2011, A528: 4600
45 Adegoke O, Andersson J, Brodin H, et al. Review of laser powder bed fusion of gamma-prime-strengthened nickel-based superalloys [J]. Metals, 2020, 10: 996
doi: 10.3390/met10080996
46 Thomas E, Roman E, Andreas K. Method for post-built heat treatment of additively manufactured components made of gamma-prime strengthened superalloys [P]. US, 9670572-B2, 2017
47 Basak A, Acharya R, Das S. Additive manufacturing of single-crystal superalloy CMSX-4 through scanning laser epitaxy: Computational modeling, experimental process development, and process parameter optimization [J]. Metall. Mater. Trans., 2016, 47A: 3845
48 Megahed M, Mindt H W, N'Dri N, et al. Metal additive-manufacturing process and residual stress modeling [J]. Integr. Mater. Manuf. Innov., 2016, 5: 61
doi: 10.1186/s40192-016-0047-2
49 Carpenter K, Tabei A. On residual stress development, prevention, and compensation in metal additive manufacturing [J]. Materials, 2020, 13(2): 255
doi: 10.3390/ma13020255
50 Fang Z C, Wu Z L, Huang C G, et al. Review on residual stress in selective laser melting additive manufacturing of alloy parts [J]. Opt. Laser Technol., 2020, 129: 106283
doi: 10.1016/j.optlastec.2020.106283
51 Risse J. Additive manufacturing of nickel-base superalloy IN738LC by laser powder bed fusion [D]. Lehrstuhl: Lehrstuhl für Lasertechnik, 2019
52 Xu J H, Gruber H, Peng R L, et al. A novel γ′-strengthened nickel-based superalloy for laser powder bed fusion [J]. Materials, 2020, 13: 4930
doi: 10.3390/ma13214930
53 Bartlett J L, Croom B P, Burdick J, et al. Revealing mechanisms of residual stress development in additive manufacturing via digital image correlation [J]. Addit. Manuf., 2018, 22: 1.
54 Johnson L, Mahmoudi M, Zhang B, et al. Assessing printability maps in additive manufacturing of metal alloys [J]. Acta Mater., 2019, 176: 199
doi: 10.1016/j.actamat.2019.07.005
55 Engeli R. Selective laser melting & heat treatment of γ′ strengthened Ni-base superalloys for high temperature applications [D]. Zurich: ETH Zurich, 2017
56 Xu J Y, Ding Y T, Gao Y B, et al. Grain refinement and crack inhibition of hard-to-weld Inconel 738 alloy by altering the scanning strategy during selective laser melting [J]. Mater. Des., 2021, 209: 109940
doi: 10.1016/j.matdes.2021.109940
57 Guo C, Zhou Y, Li X G, et al. A comparing study of defect generation in IN738LC superalloy fabricated by laser powder bed fusion: Continuous-wave mode versus pulsed-wave mode [J]. J. Mater. Sci. Technol., 2021, 90: 45
doi: 10.1016/j.jmst.2021.03.006
58 Zhang S Y, Lin X, Wang L L, et al. Influence of grain inhomogeneity and precipitates on the stress rupture properties of Inconel 718 superalloy fabricated by selective laser melting [J]. Mater. Sci. Eng., 2021, A803: 140702
59 Papadakis L, Chantzis D, Salonitis K. On the energy efficiency of pre-heating methods in SLM/SLS processes [J]. Int. J. Adv. Manuf. Technol., 2018, 95: 1325
doi: 10.1007/s00170-017-1287-9
60 Bartlett J L, Li X D. An overview of residual stresses in metal powder bed fusion [J]. Addit. Manuf., 2019, 27: 131
doi: 10.1016/j.addma.2019.02.020
61 Kempen K, Thijs L, Vrancken B, et al. Producing crack-free, high density M2 Hss parts by selective laser melting: Pre-heating the baseplate [A]. Proceedings of the 2013 International Solid Freeform Fabrication Symposium [C]. Austin: University of Texas at Austin, 2013: 131
62 Liu W B, Mo S D, Xie Y G, et al. Research progress of hot isostatic pressing to eliminate the pores in metal parts prepared by additive manufacturing [J]. Mater. Res. Appl., 2021, 15: 287
刘文彬, 莫仕栋, 谢月光 等. 热等静压消除金属增材制造构件孔隙的研究进展 [J]. 材料研究与应用, 2021, 15: 287
63 Atkinson H V, Davies S. Fundamental aspects of hot isostatic pressing: An overview [J]. Metall. Mater. Trans., 2000, 31A: 2981
64 Han Q Q, Mertens R, Montero-Sistiaga M L, et al. Laser powder bed fusion of Hastelloy X: Effects of hot isostatic pressing and the hot cracking mechanism [J]. Mater. Sci. Eng., 2018, A732: 228
65 He Q G, Liu J, Li L X, et al. Effect of hot isostatic pressing on microstructures and mechanical properties of IN738LC superalloy [J]. Mater. Sci. Forum, 2017, 898: 401
doi: 10.4028/www.scientific.net/MSF.898.401
66 Sentyurina Z A, Baskov F A, Loginov P A, et al. The effect of hot isostatic pressing and heat treatment on the microstructure and properties of EP741NP nickel alloy manufactured by laser powder bed fusion [J]. Addit. Manuf., 2021, 37: 101629
67 Zhao X M, Lin X, Chen J, et al. The effect of hot isostatic pressing on crack healing, microstructure, mechanical properties of Rene88DT superalloy prepared by laser solid forming [J]. Mater. Sci. Eng., 2009, A504: 129
68 Vilanova M, Garciandia F, Sainz S, et al. The limit of hot isostatic pressing for healing cracks present in an additively manufactured nickel superalloy [J]. J. Mater. Process. Technol., 2022, 300: 117398
doi: 10.1016/j.jmatprotec.2021.117398
69 Zhou W Z, Zhu G L, Wang R, et al. Inhibition of cracking by grain boundary modification in a non-weldable nickel-based superalloy processed by laser powder bed fusion [J]. Mater. Sci. Eng., 2020, A791: 139745
70 Chen L Y, Xu J Q, Choi H, et al. Rapid control of phase growth by nanoparticles [J]. Nat. Commun., 2014, 5: 3879
doi: 10.1038/ncomms4879
71 Cheng X P, Zhao Y N, Qian Z, et al. Crack elimination and mechanical properties enhancement in additive manufactured Hastelloy X via in-situ chemical doping of Y2O3 [J]. Mater. Sci. Eng., 2021, A824: 141867
72 Bandyopadhyay A, Traxel K D, Lang M, et al. Alloy design via additive manufacturing: Advantages, challenges, applications and perspectives [J]. Mater. Today, 2022, 52: 207
doi: 10.1016/j.mattod.2021.11.026
73 Sun Z J, Ma Y, Ponge D, et al. Thermodynamics-guided alloy and process design for additive manufacturing [J]. Nat. Commun., 2022, 13: 4361
doi: 10.1038/s41467-022-31969-y pmid: 35896545
74 Zhou W Z, Tian Y S, Tan Q B, et al. Effect of carbon content on the microstructure, tensile properties and cracking susceptibility of IN738 superalloy processed by laser powder bed fusion [J]. Addit. Manuf., 2022, 58: 103016
75 Wang H, Zhang X, Wang G B, et al. Selective laser melting of the hard-to-weld IN738LC superalloy: Efforts to mitigate defects and the resultant microstructural and mechanical properties [J]. J. Alloys Compd., 2019, 807: 151662
doi: 10.1016/j.jallcom.2019.151662
76 Ackers M A, Messé O M D M, Hecht U. Novel approach of alloy design and selection for additive manufacturing towards targeted applications [J]. J. Alloys Compd., 2021, 866: 158965
doi: 10.1016/j.jallcom.2021.158965
77 Clare A T, Mishra R S, Merklein M, et al. Alloy design and adaptation for additive manufacture [J]. J. Mater. Process. Technol., 2022, 299: 117358
doi: 10.1016/j.jmatprotec.2021.117358
78 Knoll H, Ocylok S, Weisheit A, et al. Combinatorial alloy design by laser additive manufacturing [J]. Steel Res. Int., 2017, 88: 1600416
doi: 10.1002/srin.201600416
79 Bocklund B, Bobbio L D, Otis R A, et al. Experimental validation of Scheil-Gulliver simulations for gradient path planning in additively manufactured functionally graded materials [J]. Materialia, 2020, 11: 100689
doi: 10.1016/j.mtla.2020.100689
80 Ghoussoub J N, Klupś P, Dick-Cleland W J B, et al. A new class of alumina-forming superalloy for 3D printing [J]. Addit. Manuf., 2022, 52: 102608
81 Yan W T, Lin S, Kafka O L, et al. Data-driven multi-scale multi-physics models to derive process-structure-property relationships for additive manufacturing [J]. Comput. Mech., 2018, 61: 521
doi: 10.1007/s00466-018-1539-z
82 Zhang N, Wang M H, Zhang S Y, et al. Review on key common technologies of metal additive manufacturing based on synchrotron radiation and neutron diffraction analysis [J]. Rare Met. Mater. Eng., 2022, 51: 2698
张 楠, 王淼辉, 张书彦 等. 基于同步辐射和中子衍射分析的金属增材制造关键共性问题研究进展 [J]. 稀有金属材料与工程, 2022, 51: 2698
83 Wu Z K, Zhang J, Wu S C, et al. Application of insitu three-dimensional synchrotron radiation X-ray tomography for defects evaluation of metal additive manufactured components [J]. Nondestr. Test., 2020, 42(7): 46
吴正凯, 张 杰, 吴圣川 等. 同步辐射X射线原位三维成像在金属增材制件缺陷评价中的应用 [J]. 无损检测, 2020, 42(7): 46
84 Ioannidou C, König H H, Semjatov N, et al. In-situ synchrotron X-ray analysis of metal additive manufacturing: Current state, opportunities and challenges [J]. Mater. Des., 2022, 219: 110790
doi: 10.1016/j.matdes.2022.110790
85 du Plessis A, Yadroitsava I, Yadroitsev I. Effects of defects on mechanical properties in metal additive manufacturing: A review focusing on X-ray tomography insights [J]. Mater. Des., 2020, 187: 108385
doi: 10.1016/j.matdes.2019.108385
86 Bayat M, Dong W, Thorborg J, et al. A review of multi-scale and multi-physics simulations of metal additive manufacturing processes with focus on modeling strategies [J]. Addit. Manuf., 2021, 47: 102278
87 Yan W T, Ge W J, Qian Y, et al. Multi-physics modeling of single/multiple-track defect mechanisms in electron beam selective melting [J]. Acta Mater., 2017, 134: 324
doi: 10.1016/j.actamat.2017.05.061
[1] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[2] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[3] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[4] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[5] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[6] HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review[J]. 金属学报, 2023, 59(3): 335-348.
[7] YANG Du, BAI Qin, HU Yue, ZHANG Yong, LI Zhijun, JIANG Li, XIA Shuang, ZHOU Bangxin. Fractal Analysis of the Effect of Grain Boundary Character on Te-Induced Brittle Cracking in GH3535 Alloy[J]. 金属学报, 2023, 59(2): 248-256.
[8] TANG Weineng, MO Ning, HOU Juan. Research Progress of Additively Manufactured Magnesium Alloys: A Review[J]. 金属学报, 2023, 59(2): 205-225.
[9] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[10] QI Zhao, WANG Bin, ZHANG Peng, LIU Rui, ZHANG Zhenjun, ZHANG Zhefeng. Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects[J]. 金属学报, 2023, 59(10): 1411-1418.
[11] PENG Zhiqiang, LIU Qian, GUO Dongwei, ZENG Zihang, CAO Jianghai, HOU Zibing. Independent Change Law of Mold Heat Transfer in Continuous Casting Based on Big Data Mining[J]. 金属学报, 2023, 59(10): 1389-1400.
[12] YANG Chao, LU Haizhou, MA Hongwei, CAI Weisi. Research and Development in NiTi Shape Memory Alloys Fabricated by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 55-74.
[13] LU Haifei, LV Jiming, LUO Kaiyu, LU Jinzhong. Microstructure and Mechanical Properties of Ti6Al4V Alloy by Laser Integrated Additive Manufacturing with Alternately Thermal/Mechanical Effects[J]. 金属学报, 2023, 59(1): 125-135.
[14] WANG Meng, YANG Yongqiang, Trofimov Vyacheslav, SONG Changhui, ZHOU Hanxiang, WANG Di. Effects of Particle Size on Processability of AlSi10Mg Alloy Manufactured by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 147-156.
[15] PENG Liming, DENG Qingchen, WU Yujuan, FU Penghuai, LIU Ziyi, WU Qianye, CHEN Kai, DING Wenjiang. Additive Manufacturing of Magnesium Alloys by Selective Laser Melting Technology: A Review[J]. 金属学报, 2023, 59(1): 31-54.
No Suggested Reading articles found!