|
|
Research Progress on Additive Manufacturing TiAl Alloy |
CHEN Yuyong1,2( ), SHI Guohao1,2, DU Zhiming2, ZHANG Yu1,2, CHANG Shuai1 |
1 State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China 2 National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin 150001, China |
|
Cite this article:
CHEN Yuyong, SHI Guohao, DU Zhiming, ZHANG Yu, CHANG Shuai. Research Progress on Additive Manufacturing TiAl Alloy. Acta Metall Sin, 2024, 60(1): 1-15.
|
Abstract One of the most promising high-temperature structural materials in aerospace and civil industries is the lightweight and heat-resistant TiAl alloys. However, owing to their low ductility and fracture toughness, manufacturing TiAl parts is challenging. At present, additive manufacturing process is considered one of the most promising technologies for manufacturing TiAl parts. Based on the principles and characteristics of additive manufacturing technology, this paper summarizes the process-structure-property relation of laser metal deposition (LMD), selective laser melting (SLM), and electron beam melting (EBM) in the preparation of TiAl alloy. Furthermore, this paper discusses the future development trends of additive manufacturing technology.
|
Received: 10 November 2022
|
|
Fund: National Key Research and Development Project of China(2017YFE0123500) |
Corresponding Authors:
CHEN Yuyong, professor, Tel: (0451)86418802, E-mail: yychen@hit.edu.cn
|
1 |
Clemens H, Smarsly W, Güther V, et al. Advanced intermetallic titanium aluminides [A]. Proceedings of the 13th World Conference on Titanium [C]. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016: 1189
|
2 |
Lin J P, Zhang L Q, Song X P, et al. Status of research and development of light-weight γ-TiAl intermetallic based compounds [J]. Mater. China, 2010, 29(2): 1
|
|
林均品, 张来启, 宋西平 等. 轻质γ-TiAl金属间化合物的研究进展 [J]. 中国材料进展, 2010, 29(2): 1
|
3 |
Bewlay B P, Nag S, Suzuki A, et al. TiAl alloys in commercial aircraft engines [J]. Mater. High Temp., 2016, 33: 549
doi: 10.1080/09603409.2016.1183068
|
4 |
Chen W, Li Z Q. Additive manufacturing of titanium aluminides [A]. Additive Manufacturing for the Aerospace Industry [M]. Amsterdam: Elsevier, 2019: 235
|
5 |
Yang R. Advances and challenges of TiAl base alloys [J]. Acta Metall. Sin., 2015, 51: 129
doi: 10.11900/0412.1961.2014.00396
|
|
杨 锐. 钛铝金属间化合物的进展与挑战 [J]. 金属学报, 2015, 51: 129
|
6 |
Lu B H. Additive manufacturing—Current situation and future [J]. China Mech. Eng., 2020, 31: 19
|
|
卢秉恒. 增材制造技术—现状与未来 [J]. 中国机械工程, 2020, 31: 19
|
7 |
Lu B H, Li D C. Development of the additive manufacturing (3D printing) technology [J]. Mach. Build. Automat., 2013, 42(4): 1
|
|
卢秉恒, 李涤尘. 增材制造(3D打印)技术发展 [J]. 机械制造与自动化, 2013, 42(4): 1
|
8 |
Debroy T, Wei H L, Zuback J S, et al. Additive manufacturing of metallic components—Process, structure and properties [J]. Prog. Mater. Sci., 2018, 92: 112
doi: 10.1016/j.pmatsci.2017.10.001
|
9 |
Dutta B, Froes F H. The additive manufacturing (AM) of titanium alloys [J]. Met. Powder Rep., 2017, 72: 96
doi: 10.1016/j.mprp.2016.12.062
|
10 |
Barroqueiro B, Andrade-Campos A, Valente R A F, et al. Metal additive manufacturing cycle in aerospace industry: A comprehensive review [J]. J. Manuf. Mater. Process., 2019, 3: 52
|
11 |
Gibson I, Rosen D, Stucker B, et al. Additive Manufacturing Technologies [M]. 3rd Ed., Switzerland: Springer, 2021: 125
|
12 |
Moll J H, Whitney E, Yolton C F, et al. Laser forming of gamma titanium aluminide [A]. Gamma Titanium Aluminides 1999 [C]. San Diego: The Minerals, Metals & Materials Society, 1999: 255
|
13 |
Zhang X D, Brice C, Mahaffey D W, et al. Characterization of laser-deposited TiAl alloys [J]. Scr. Mater., 2001, 44: 2419
doi: 10.1016/S1359-6462(01)00915-0
|
14 |
Thomas M, Malot T, Aubry P. Laser metal deposition of the intermetallic TiAl alloy [J]. Metall. Mater. Trans., 2017, 48A: 3143
|
15 |
Srivastava D, Chang I T H, Loretto M H. The effect of process parameters and heat treatment on the microstructure of direct laser fabricated TiAl alloy samples [J]. Intermetallics, 2001, 9: 1003
doi: 10.1016/S0966-9795(01)00063-2
|
16 |
Srivastava D, Chang I T H, Loretto M H. The optimisation of processing parameters and characterisation of microstructure of direct laser fabricated TiAl alloy components [J]. Mater. Des., 2000, 21: 425
doi: 10.1016/S0261-3069(99)00091-6
|
17 |
Qu H P, Wang H M. Microstructure and mechanical properties of laser melting deposited γ-TiAl intermetallic alloys [J]. Mater. Sci. Eng., 2007, A466: 187
|
18 |
Wu Y, Zhang S Q, Cheng X, et al. Investigation on solid-state phase transformation in a Ti-47Al-2Cr-2V alloy due to thermal cycling during laser additive manufacturing process [J]. J. Alloys Compd., 2019, 799: 325
doi: 10.1016/j.jallcom.2019.05.337
|
19 |
Wang J W, Luo Q, Wang H M, et al. Microstructure characteristics and failure mechanisms of Ti-48Al-2Nb-2Cr titanium aluminide intermetallic alloy fabricated by directed energy deposition technique [J]. Addit. Manuf., 2020, 32: 101007
|
20 |
Zhang J S, Wu Y, Cheng X, et al. Study of microstructure evolution and preference growth direction in a fully laminated directional micro-columnar TiAl fabricated using laser additive manufacturing technique [J]. Mater. Lett., 2019, 243: 62
doi: 10.1016/j.matlet.2019.01.137
|
21 |
Thomas M. Progress in the understanding of the microstructure evolution of direct laser fabricated TiAl [J]. Mater. Sci. Forum, 2016, 879: 1939
doi: 10.4028/www.scientific.net/MSF.879
|
22 |
Rittinghaus S K, Weisheit A, Mathes M, et al. Laser metal deposition of titanium aluminides—A future repair technology for jet engine blades? [A]. Proceedings of the 13th World Conference on Titanium [C]. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016: 1205
|
23 |
Srivastava D, Hu D, Chang I T H, et al. The influence of thermal processing route on the microstructure of some TiAl-based alloys [J]. Intermetallics, 1999, 7: 1107
doi: 10.1016/S0966-9795(99)00029-1
|
24 |
Rittinghaus S K, Hecht U, Werner V, et al. Heat treatment of laser metal deposited TiAl TNM alloy [J]. Intermetallics, 2018, 95: 94
doi: 10.1016/j.intermet.2018.02.002
|
25 |
Rittinghaus S K, Schmelzer J, Rackel M W, et al. Direct energy deposition of TiAl for hybrid manufacturing and repair of turbine blades [J]. Materials (Basel), 2020, 13: 4392
doi: 10.3390/ma13194392
|
26 |
Jacob J. Microstructures of TiAl additively manufactured by EBM and LMD [D]. Melbourne: The University of Melbourne, 2020
|
27 |
Liu Z Q, Ma R X, Xu G J, et al. Effects of annealing on microstructure and mechanical properties of γ-TiAl alloy fabricated via laser melting deposition [J]. Trans. Nonferrous Met. Soc. China, 2020, 30: 917
doi: 10.1016/S1003-6326(20)65265-7
|
28 |
Qu H P, Li P, Zhang S Q, et al. The effects of heat treatment on the microstructure and mechanical property of laser melting deposition γ-TiAl intermetallic alloys [J]. Mater. Des., 2010, 31: 2201
doi: 10.1016/j.matdes.2009.10.045
|
29 |
Wu Y, Wang H M, Ma X J, et al. Fabrication of TiAl alloy with no multiple heat-affected bands using continuous direct energy deposition [J]. Mater. Lett., 2020, 281: 128581
doi: 10.1016/j.matlet.2020.128581
|
30 |
Cheng F, Wang H M, Wu Y, et al. Microstructure evolution and tensile property of TiAl alloy using continuous direct energy deposition technique [J]. J. Alloys Compd., 2022, 906: 164309
doi: 10.1016/j.jallcom.2022.164309
|
31 |
Zhang X Y, Li C W, Zheng M Y, et al. Anisotropic tensile behavior of Ti-47Al-2Cr-2Nb alloy fabricated by direct laser deposition [J]. Addit. Manuf., 2020, 32: 101087
|
32 |
Almangour B, Grzesiak D, Yang J M. Selective laser melting of TiB2/316L stainless steel composites: The roles of powder preparation and hot isostatic pressing post-treatment [J]. Powder Technol., 2017, 309: 37
doi: 10.1016/j.powtec.2016.12.073
|
33 |
Zhao Z Y, Wang S W, Du W B, et al. Interfacial structures and strengthening mechanisms of in situ synthesized TiC reinforced Ti6Al4V composites by selective laser melting [J]. Ceram. Int., 2021, 47: 34127
doi: 10.1016/j.ceramint.2021.08.323
|
34 |
Bai P K, Huo P C, Zhao Z Y, et al. Microstructure evolution and corrosion mechanism of in situ synthesized TiC/TC4 alloy nanocomposites fabricated by laser powder bed fusion [J]. Ceram. Int., 2023, 49: 2752
doi: 10.1016/j.ceramint.2022.09.257
|
35 |
Li S, Wei Q S, Shi Y S, et al. Microstructure characteristics of inconel 625 superalloy manufactured by selective laser melting [J]. J. Mater. Sci. Technol., 2015, 31: 946
doi: 10.1016/j.jmst.2014.09.020
|
36 |
Caprio L, Demir A G, Chiari G, et al. Defect-free laser powder bed fusion of Ti-48Al-2Cr-2Nb with a high temperature inductive preheating system [J]. J. Phys.: Photonics, 2020, 2: 024001
|
37 |
Doubenskaia M, Domashenkov A, Smurov I, et al. Study of selective laser melting of intermetallic TiAl powder using integral analysis [J]. Int. J. Mach. Tools Manuf., 2018, 129: 1
doi: 10.1016/j.ijmachtools.2018.02.003
|
38 |
Löber L, Biamino S, Ackelid U, et al. Comparison of selective laser and electron beam melted titanium aluminides [A]. 2011 International Solid Freeform Fabrication Symposium [C]. Austin: University of Texas, 2011: 547
|
39 |
Thomas M, Malot T, Aubry P, et al. The prospects for additive manufacturing of bulk TiAl alloy [J]. Mater. High Temp., 2016, 33: 571
doi: 10.1080/09603409.2016.1171510
|
40 |
Shi X Z, Wang H X, Feng W W, et al. The crack and pore formation mechanism of Ti-47Al-2Cr-2Nb alloy fabricated by selective laser melting [J]. Int. J. Refract. Met. Hard Mater., 2020, 91: 105247
doi: 10.1016/j.ijrmhm.2020.105247
|
41 |
Wang M S, Liu E W, Du Y L, et al. Cracking mechanism and a novel strategy to eliminate cracks in TiAl alloy additively manufactured by selective laser melting [J]. Scr. Mater., 2021, 204: 114151
doi: 10.1016/j.scriptamat.2021.114151
|
42 |
Polozov I, Kantyukov A, Popovich V, et al. Microstructure and mechanical properties of TiAl-based alloy produced by selective laser melting [A]. Proceedings of the 29th International Conference on Metallurgy and Materials (METAL 2020) [C]. Brno: TANGER Ltd., 2020: 1037
|
43 |
Polozov I, Kantyukov A, Popovich A, et al. Tailoring microstructure of selective laser melted TiAl-alloy with in-situ heat treatment via multiple laser exposure [A]. TMS 2021 150th Annual Meeting & Exhibition Supplemental Proceedings [C]. Pittsburgh: Springer, 2021: 197
|
44 |
Mizuta K, Hijikata Y, Fujii T, et al. Characterization of Ti-48Al-2Cr-2Nb built by selective laser melting [J]. Scr. Mater., 2021, 203: 114107
doi: 10.1016/j.scriptamat.2021.114107
|
45 |
Yang X, Zhao Z Y, Bai P K, et al. EBSD investigation on the microstructure of Ti48Al2Cr2Nb alloy hot isostatic pressing formed by selective laser melting (SLM) [J]. Mater. Lett., 2022, 309: 131334
doi: 10.1016/j.matlet.2021.131334
|
46 |
Ismaeel A, Wang C S, Xu D S. The effects of electromagnetic stirring on microstructure and properties of γ-TiAl based alloys fabricated by selective laser melting technique [J]. Int. J. Aerosp. Mech. Eng., 2020, 14: 131
|
47 |
Gussone J, Hagedorn Y C, Gherekhloo H, et al. Microstructure of γ-titanium aluminide processed by selective laser melting at elevated temperatures [J]. Intermetallics, 2015, 66: 133
doi: 10.1016/j.intermet.2015.07.005
|
48 |
Zhang S Z. Hot deformation and microstructure and mechanical properties of high Nb containing TiAl based alloy [D]. Harbin: Harbin Institute of Technology, 2013
|
|
张树志. 高Nb-TiAl合金高温变形及组织性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2013
|
49 |
Li M A. Effect of boron or carbon on the high temperature deformation microstructure and mechanical properties of TiAl alloy [D]. Harbin: Harbin Institute of Technology, 2019
|
|
李明骜. B和C元素对TiAl合金高温变形组织及性能影响研究 [D]. 哈尔滨工业大学, 2019
|
50 |
Li W, Liu J, Zhou Y, et al. Effect of laser scanning speed on a Ti-45Al-2Cr-5Nb alloy processed by selective laser melting: Microstructure, phase and mechanical properties [J]. J. Alloys Compd., 2016, 688: 626
doi: 10.1016/j.jallcom.2016.07.206
|
51 |
Gao P, Huang W P, Yang H H, et al. Cracking behavior and control of β-solidifying Ti-40Al-9V-0.5Y alloy produced by selective laser melting [J]. J. Mater. Sci. Technol., 2020, 39: 144
doi: 10.1016/j.jmst.2019.08.026
|
52 |
Löber L, Schimansky F P, Kühn U, et al. Selective laser melting of a beta-solidifying TNM-B1 titanium aluminide alloy [J]. J. Mater. Process. Technol., 2014, 214: 1852
doi: 10.1016/j.jmatprotec.2014.04.002
|
53 |
Vogelpoth A, Schleifenbaum J H, Rittinghaus S. Laser additive manufacturing of titanium aluminides for turbomachinery applications [A]. ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition [C]. Phoenix: American Society of Mechanical Engineers, 2019
|
54 |
Gussone J, Garces G, Haubrich J, et al. Microstructure stability of γ-TiAl produced by selective laser melting [J]. Scr. Mater., 2017, 130: 110
doi: 10.1016/j.scriptamat.2016.11.028
|
55 |
Liu S Y, Shin Y C. Additive manufacturing of Ti6Al4V alloy: A review [J]. Mater. Des., 2019, 164: 107552
doi: 10.1016/j.matdes.2018.107552
|
56 |
Murr L E, Gaytan S M, Ceylan A, et al. Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting [J]. Acta Mater., 2010, 58: 1887
doi: 10.1016/j.actamat.2009.11.032
|
57 |
Biamino S, Penna A, Ackelid U, et al. Electron beam melting of Ti-48Al-2Cr-2Nb alloy: Microstructure and mechanical properties investigation [J]. Intermetallics, 2011, 19: 776
doi: 10.1016/j.intermet.2010.11.017
|
58 |
Baudana G, Biamino S, Klöden B, et al. Electron beam melting of Ti-48Al-2Nb-0.7Cr-0.3Si: Feasibility investigation [J]. Intermetallics, 2016, 73: 43
doi: 10.1016/j.intermet.2016.03.001
|
59 |
Schwerdtfeger J, Körner C. Selective electron beam melting of Ti-48Al-2Nb-2Cr: Microstructure and aluminium loss [J]. Intermetallics, 2014, 49: 29
doi: 10.1016/j.intermet.2014.01.004
|
60 |
Mohammad A, Al-Ahmari A M, Balla V K, et al. In vitro wear, corrosion and biocompatibility of electron beam melted γ-TiAl [J]. Mater. Des., 2017, 133: 186
doi: 10.1016/j.matdes.2017.07.065
|
61 |
Cormier D, Harrysson O, Mahale T, et al. Freeform fabrication of titanium aluminide via electron beam melting using prealloyed and blended powders [J]. Res. Lett. Mater. Sci., 2007, 2007: 034737
|
62 |
Ge W J, Guo C, Lin F. Effect of process parameters on microstructure of TiAl alloy produced by electron beam selective melting [J]. Procedia Eng., 2014, 81: 1192
doi: 10.1016/j.proeng.2014.10.096
|
63 |
Klassen A, Forster V E, Juechter V, et al. Numerical simulation of multi-component evaporation during selective electron beam melting of TiAl [J]. J. Mater. Process. Technol., 2017, 247: 280
doi: 10.1016/j.jmatprotec.2017.04.016
|
64 |
Kim Y K, Youn S J, Kim S W, et al. High-temperature creep behavior of gamma Ti-48Al-2Cr-2Nb alloy additively manufactured by electron beam melting [J]. Mater. Sci. Eng., 2019, A763: 138138
|
65 |
Terner M, Biamino S, Epicoco P, et al. Electron beam melting of high niobium containing TiAl alloy: Feasibility investigation [J]. Steel Res. Int., 2012, 83: 943
doi: 10.1002/srin.v83.10
|
66 |
Mohammad A, Alahmari A M, Mohammed M K, et al. Effect of energy input on microstructure and mechanical properties of titanium aluminide alloy fabricated by the additive manufacturing process of electron beam melting [J]. Materials (Basel), 2017, 10: 211
doi: 10.3390/ma10020211
|
67 |
Seifi M, Salem A A, Satko D P, et al. Effects of HIP on microstructural heterogeneity, defect distribution and mechanical properties of additively manufactured EBM Ti-48Al-2Cr-2Nb [J]. J. Alloys Compd., 2017, 729: 1118
doi: 10.1016/j.jallcom.2017.09.163
|
68 |
Todai M, Nakano T, Liu T Q, et al. Effect of building direction on the microstructure and tensile properties of Ti-48Al-2Cr-2Nb alloy additively manufactured by electron beam melting [J]. Addit. Manuf., 2017, 13: 61
|
69 |
Cho K, Kobayashi R, Oh J Y, et al. Influence of unique layered microstructure on fatigue properties of Ti-48Al-2Cr-2Nb alloys fabricated by electron beam melting [J]. Intermetallics, 2018, 95: 1
doi: 10.1016/j.intermet.2018.01.009
|
70 |
Cakmak E, Nandwana P, Shin D, et al. A comprehensive study on the fabrication and characterization of Ti-48Al-2Cr-2Nb preforms manufactured using electron beam melting [J]. Materialia, 2019, 6: 100284
doi: 10.1016/j.mtla.2019.100284
|
71 |
Wartbichler R, Clemens H, Mayer S, et al. On the formation mechanism of banded microstructures in electron beam melted Ti-48Al-2Cr-2Nb and the design of heat treatments as remedial action [J]. Adv. Eng. Mater., 2021, 23: 2101199
doi: 10.1002/adem.v23.12
|
72 |
Biamino S, Klöden B, Weiβgärber T, et al. Titanium aluminides for automotive applications processed by electron beam melting [A]. Proceeding of the 2014 World Congress on Powder Metallurgy and Particulate Materials [C]. Orlando, FL, 2014
|
73 |
Lin B C, Chen W. Mechanical properties of TiAl fabricated by electron beam melting—A review [J]. China Foundry, 2021, 18: 307
doi: 10.1007/s41230-021-1093-8
|
74 |
Wartbichler R, Clemens H, Mayer S. Electron beam melting of a β-solidifying intermetallic titanium aluminide alloy [J]. Adv. Eng. Mater., 2019, 21: 1900800
doi: 10.1002/adem.v21.12
|
75 |
Yue H Y, Chen Y Y, Wang X P, et al. Microstructure, texture and tensile properties of Ti-47Al-2Cr-2Nb alloy produced by selective electron beam melting [J]. J. Alloys Compd., 2018, 766: 450
doi: 10.1016/j.jallcom.2018.07.025
|
76 |
Chen Y Y, Yue H Y, Wang X P. Microstructure, texture and tensile property as a function of scanning speed of Ti-47Al-2Cr-2Nb alloy fabricated by selective electron beam melting [J]. Mater. Sci. Eng., 2018, A713: 195
|
77 |
Yue H Y, Chen Y Y, Wang X P, et al. Effect of beam current on microstructure, phase, grain characteristic and mechanical properties of Ti-47Al-2Cr-2Nb alloy fabricated by selective electron beam melting [J]. J. Alloys Compd., 2018, 750: 617
doi: 10.1016/j.jallcom.2018.03.343
|
78 |
Chen Y Y, Yue H Y, Wang X P, et al. Selective electron beam melting of TiAl alloy: Microstructure evolution, phase transformation and microhardness [J]. Mater. Charact., 2018, 142: 584
doi: 10.1016/j.matchar.2018.06.027
|
79 |
Kan W, Chen B, Jin C, et al. Microstructure and mechanical properties of a high Nb-TiAl alloy fabricated by electron beam melting [J]. Mater. Des., 2018, 160: 611
doi: 10.1016/j.matdes.2018.09.044
|
80 |
Kan W B, Liang Y F, Peng H, et al. Microstructural degradation of Ti-45Al-8Nb alloy during the fabrication process by electron beam melting [J]. JOM, 2017, 69: 2596
doi: 10.1007/s11837-017-2592-3
|
81 |
Juechter V, Körner C. Creep properties of Ti-48Al-2Cr-2Nb produced by selective electron beam melting [J]. Key Eng. Mater., 2016, 704: 190
doi: 10.4028/www.scientific.net/KEM.704
|
82 |
Lin B C, Chen W, Yang Y, et al. Anisotropy of microstructure and tensile properties of Ti-48Al-2Cr-2Nb fabricated by electron beam melting [J]. J. Alloys Compd., 2020, 830: 154684
doi: 10.1016/j.jallcom.2020.154684
|
83 |
Yue H Y. Study on the microstructure and mechanical property of Ti-47Al-2Cr-2Nb alloy fabricated by selective electron beam melting [D]. Harbin: Harbin Institute of Technology, 2019
|
|
岳航宇. 电子束选区熔化成形Ti-47Al-2Cr-2Nb合金的组织及力学性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2019
|
84 |
Chen W, Yang Y, Liu L L, et al. Microstructure control and tensile properties of EBM γ-TiAl [J]. Aeronaut. Manuf. Technol., 2017, (1-2): 37
|
|
陈 玮, 杨 洋, 刘亮亮 等. 电子束增材制造γ-TiAl显微组织调控与拉伸性能研究 [J]. 航空制造技术, 2017, (1-2): 37
|
85 |
Kim Y K, Hong J K, Lee K A. Enhancing the creep resistance of electron beam melted gamma Ti-48Al-2Cr-2Nb alloy by using two-step heat treatment [J]. Intermetallics, 2020, 121: 106771
doi: 10.1016/j.intermet.2020.106771
|
86 |
Reith M, Franke M, Schloffer M, et al. Processing 4th generation titanium aluminides via electron beam based additive manufacturing—Characterization of microstructure and mechanical properties [J]. Materialia, 2020, 14: 100902
doi: 10.1016/j.mtla.2020.100902
|
87 |
Rittinghaus S K, Molina Ramirez V R, Vogelpoth A, et al. Laser based manufacturing of titanium aluminides [J]. MATEC Web Conf., 2020, 321: 08001
|
88 |
Kimme T, Seifert M. Laser surface cladding of titanium aluminides [J]. Laser Technik J., 2017, 14: 18
doi: 10.1002/latj.v14.5
|
89 |
Mallikarjuna B, Reutzel E W. Reclamation of intermetallic titanium aluminide aero-engine components using directed energy deposition technology [J]. Manufacturing Rev., 2022, 9: 27
doi: 10.1051/mfreview/2022024
|
90 |
Sinha A, Swain B, Behera A, et al. A review on the processing of aero-turbine blade using 3D print techniques [J]. J. Manuf. Mater. Process., 2022, 6: 16
|
91 |
Kellner T. Avio Aero, a General Electric (GE) Aviation EBM Turbine Blade [EB/OL]. (2021-11-15).
|
92 |
Seidel A, Straubel A, Finaske T, et al. Added value by hybrid additive manufacturing and advanced manufacturing approaches [J]. J. Laser Appl., 2018, 30: 032301
|
93 |
Kan W B. Processing technology and microstructure control of high Nb-TiAl alloy fabricated by electron beam melting [D]. Beijing: University of Science and Technology Beijing, 2019
|
|
阚文斌. 电子束选区熔化技术制备高Nb-TiAl合金的成形工艺和组织调控研究 [D]. 北京: 北京科技大学, 2019
|
94 |
Clemens H, Design Mayer S., processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys [J]. Adv. Eng. Mater., 2013, 15: 191
doi: 10.1002/adem.v15.4
|
95 |
Wu X H. Review of alloy and process development of TiAl alloys [J]. Intermetallics, 2006, 14: 1114
doi: 10.1016/j.intermet.2005.10.019
|
96 |
Appel F, Paul J D H, Oehring M. Gamma Titanium Aluminide Alloys: Science and Technology [M]. Weinheim: John Wiley & Sons, 2011: 465
|
97 |
Baumers M, Tuck C, Wildman R, et al. Shape complexity and process energy consumption in electron beam melting: A case of something for nothing in additive manufacturing? [J]. J. Ind. Ecol., 2017, 21(S1): S157
|
98 |
Rittinghaus S K, Molina Ramirez V R, Zielinski J, et al. Oxygen gain and aluminum loss during laser metal deposition of intermetallic TiAl [J]. J. Laser Appl., 2019, 31: 042005
|
99 |
Rittinghaus S K, Zielinski J. Influence of process conditions on the local solidification and microstructure during laser metal deposition of an intermetallic TiAl alloy (GE4822) [J]. Metall. Mater. Trans., 2021, 52A: 1106
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|