Please wait a minute...
Acta Metall Sin  2024, Vol. 60 Issue (1): 1-15    DOI: 10.11900/0412.1961.2022.00582
Overview Current Issue | Archive | Adv Search |
Research Progress on Additive Manufacturing TiAl Alloy
CHEN Yuyong1,2(), SHI Guohao1,2, DU Zhiming2, ZHANG Yu1,2, CHANG Shuai1
1 State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
2 National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin 150001, China
Cite this article: 

CHEN Yuyong, SHI Guohao, DU Zhiming, ZHANG Yu, CHANG Shuai. Research Progress on Additive Manufacturing TiAl Alloy. Acta Metall Sin, 2024, 60(1): 1-15.

Download:  HTML  PDF(2807KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

One of the most promising high-temperature structural materials in aerospace and civil industries is the lightweight and heat-resistant TiAl alloys. However, owing to their low ductility and fracture toughness, manufacturing TiAl parts is challenging. At present, additive manufacturing process is considered one of the most promising technologies for manufacturing TiAl parts. Based on the principles and characteristics of additive manufacturing technology, this paper summarizes the process-structure-property relation of laser metal deposition (LMD), selective laser melting (SLM), and electron beam melting (EBM) in the preparation of TiAl alloy. Furthermore, this paper discusses the future development trends of additive manufacturing technology.

Key words:  TiAl alloy      laser metal deposition      selective laser melting      electron beam melting     
Received:  10 November 2022     
ZTFLH:  TG146.23  
Fund: National Key Research and Development Project of China(2017YFE0123500)
Corresponding Authors:  CHEN Yuyong, professor, Tel: (0451)86418802, E-mail: yychen@hit.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00582     OR     https://www.ams.org.cn/EN/Y2024/V60/I1/1

Fig.1  Schematics of laser metal deposition (LMD) process[11] (a) and powder bed fusion (PBF) technology[8] (b)

Method

Energy source

Power

W

Beam size

mm

Layer thickness

μm

Powder preheating

oC

Residual stress

Build speed

cm3·h-1

Dimensional accuracy

mm

Ra

μm

Max. build size

mm

Machines

company

LMDLaser100-100002-4500-1000Room temperatureHighHigh, ~10000.5-1.0

20-50

(Coarse)

4000 × 2000 × 1000Optomec (USA)

SLM

Laser

50-500

0.1-0.5

50-100

≤ 200

High

Low, ~150

0.04-0.2

9-12

(Excellent)

800 × 400 × 500

Concept Laser and SLM Solutions (Germany)
EBMElectronbeam30000.2-1.050-200600-1150MinimalLow, ~150± 0.2

25-35

(Moderate)

ϕ350 × 380Arcam (Sweden)
Table 1  Comparisons of additive manufacturing techniques[8-11]
ProcessPowder feed rate / (g·min-1)Optimum energy density / (J·mm-2)
10.560-150
21.025-60
32.210-20
Table 2  Optimal process conditions for the manufacture of Ti-47Al-2Cr-2Nb by LMD[14]
Fig.2  SEM-BSE image of laser deposited Ti-48Al-2Cr-2Nb alloy[22]
Fig.3  SEM images of Ti-47Al-2Cr-2Nb alloy[14](a) as-built
(b) after heat treatment of 4 h at 1250oC followed by 4 h at 900oC

λ / (°)UTS / MPaδ / %
07060.51
453580.49
902730.16
Table 3  Room temperature tensile properties of Ti-47Al-2Cr-2Nb alloy under different loading directions[31]
Fig.4  Crack densities and porosities of Ti-40Al-9V-0.5Y alloy processed by SLM at different scanning speeds[51]
Fig.5  SEM images of the SLM manufactured TNM-B1 sample[52,53]
(a) as-build
(b) 1230oC, 1 h, AC + 900oC, 6 h, FC heat treated (View is perpendicular to the building direc-tion)
Fig.6  Typical SEM images of TNB-V4 samples produced at volumetric energy levels of 300 J/mm3 (a), 110 J/mm3 (b), and 60 J/mm3 (c)[47]
Fig.7  OM image of EBM Ti-48Al-2Cr-2Nb alloy[73]
Fig.8  Tensile properties of EBM Ti-48Al-2Cr-2Nb alloy subjected to heat treatment (HIP—hot isostatic pressing, DP—duplex, FL—fully lamellar)[82]
(a) yield strength (Rp0.2) (b) elongation (A) (Inset shows the locally enlarged curve)
(c) ultimate strength (Rm) (d) stress-strain curves at room temperature
Specimen condition

Kq

MPa·m1/2

R

ΔKth

MPa·m1/2

Kmax

MPa·m1/2

As-built24.1 ± 6.50.38-913.2-13.9
HIP27.8 ± 0.40.11318.2
As-cast24-250.38-918.3-20.4
Table 4  Summaries of notch toughness and fatigue crack growth results for EBM Ti-48Al-2Cr-2Nb alloy[67]
Fig.9  TiAl turbo blade fabricated using EBM technique by Avio Aero[90] (These arcam EBM machines use a powerful 3-kilowatt electron beam to melt the final grains of TiAl powders to build 40 cm long blades)
Fig.10  EBM Ti-48Al-2Cr-2Nb honeycomb made at AVIC Manufacturing Technology Institute[4]
1 Clemens H, Smarsly W, Güther V, et al. Advanced intermetallic titanium aluminides [A]. Proceedings of the 13th World Conference on Titanium [C]. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016: 1189
2 Lin J P, Zhang L Q, Song X P, et al. Status of research and development of light-weight γ-TiAl intermetallic based compounds [J]. Mater. China, 2010, 29(2): 1
林均品, 张来启, 宋西平 等. 轻质γ-TiAl金属间化合物的研究进展 [J]. 中国材料进展, 2010, 29(2): 1
3 Bewlay B P, Nag S, Suzuki A, et al. TiAl alloys in commercial aircraft engines [J]. Mater. High Temp., 2016, 33: 549
doi: 10.1080/09603409.2016.1183068
4 Chen W, Li Z Q. Additive manufacturing of titanium aluminides [A]. Additive Manufacturing for the Aerospace Industry [M]. Amsterdam: Elsevier, 2019: 235
5 Yang R. Advances and challenges of TiAl base alloys [J]. Acta Metall. Sin., 2015, 51: 129
doi: 10.11900/0412.1961.2014.00396
杨 锐. 钛铝金属间化合物的进展与挑战 [J]. 金属学报, 2015, 51: 129
6 Lu B H. Additive manufacturing—Current situation and future [J]. China Mech. Eng., 2020, 31: 19
卢秉恒. 增材制造技术—现状与未来 [J]. 中国机械工程, 2020, 31: 19
7 Lu B H, Li D C. Development of the additive manufacturing (3D printing) technology [J]. Mach. Build. Automat., 2013, 42(4): 1
卢秉恒, 李涤尘. 增材制造(3D打印)技术发展 [J]. 机械制造与自动化, 2013, 42(4): 1
8 Debroy T, Wei H L, Zuback J S, et al. Additive manufacturing of metallic components—Process, structure and properties [J]. Prog. Mater. Sci., 2018, 92: 112
doi: 10.1016/j.pmatsci.2017.10.001
9 Dutta B, Froes F H. The additive manufacturing (AM) of titanium alloys [J]. Met. Powder Rep., 2017, 72: 96
doi: 10.1016/j.mprp.2016.12.062
10 Barroqueiro B, Andrade-Campos A, Valente R A F, et al. Metal additive manufacturing cycle in aerospace industry: A comprehensive review [J]. J. Manuf. Mater. Process., 2019, 3: 52
11 Gibson I, Rosen D, Stucker B, et al. Additive Manufacturing Technologies [M]. 3rd Ed., Switzerland: Springer, 2021: 125
12 Moll J H, Whitney E, Yolton C F, et al. Laser forming of gamma titanium aluminide [A]. Gamma Titanium Aluminides 1999 [C]. San Diego: The Minerals, Metals & Materials Society, 1999: 255
13 Zhang X D, Brice C, Mahaffey D W, et al. Characterization of laser-deposited TiAl alloys [J]. Scr. Mater., 2001, 44: 2419
doi: 10.1016/S1359-6462(01)00915-0
14 Thomas M, Malot T, Aubry P. Laser metal deposition of the intermetallic TiAl alloy [J]. Metall. Mater. Trans., 2017, 48A: 3143
15 Srivastava D, Chang I T H, Loretto M H. The effect of process parameters and heat treatment on the microstructure of direct laser fabricated TiAl alloy samples [J]. Intermetallics, 2001, 9: 1003
doi: 10.1016/S0966-9795(01)00063-2
16 Srivastava D, Chang I T H, Loretto M H. The optimisation of processing parameters and characterisation of microstructure of direct laser fabricated TiAl alloy components [J]. Mater. Des., 2000, 21: 425
doi: 10.1016/S0261-3069(99)00091-6
17 Qu H P, Wang H M. Microstructure and mechanical properties of laser melting deposited γ-TiAl intermetallic alloys [J]. Mater. Sci. Eng., 2007, A466: 187
18 Wu Y, Zhang S Q, Cheng X, et al. Investigation on solid-state phase transformation in a Ti-47Al-2Cr-2V alloy due to thermal cycling during laser additive manufacturing process [J]. J. Alloys Compd., 2019, 799: 325
doi: 10.1016/j.jallcom.2019.05.337
19 Wang J W, Luo Q, Wang H M, et al. Microstructure characteristics and failure mechanisms of Ti-48Al-2Nb-2Cr titanium aluminide intermetallic alloy fabricated by directed energy deposition technique [J]. Addit. Manuf., 2020, 32: 101007
20 Zhang J S, Wu Y, Cheng X, et al. Study of microstructure evolution and preference growth direction in a fully laminated directional micro-columnar TiAl fabricated using laser additive manufacturing technique [J]. Mater. Lett., 2019, 243: 62
doi: 10.1016/j.matlet.2019.01.137
21 Thomas M. Progress in the understanding of the microstructure evolution of direct laser fabricated TiAl [J]. Mater. Sci. Forum, 2016, 879: 1939
doi: 10.4028/www.scientific.net/MSF.879
22 Rittinghaus S K, Weisheit A, Mathes M, et al. Laser metal deposition of titanium aluminides—A future repair technology for jet engine blades? [A]. Proceedings of the 13th World Conference on Titanium [C]. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016: 1205
23 Srivastava D, Hu D, Chang I T H, et al. The influence of thermal processing route on the microstructure of some TiAl-based alloys [J]. Intermetallics, 1999, 7: 1107
doi: 10.1016/S0966-9795(99)00029-1
24 Rittinghaus S K, Hecht U, Werner V, et al. Heat treatment of laser metal deposited TiAl TNM alloy [J]. Intermetallics, 2018, 95: 94
doi: 10.1016/j.intermet.2018.02.002
25 Rittinghaus S K, Schmelzer J, Rackel M W, et al. Direct energy deposition of TiAl for hybrid manufacturing and repair of turbine blades [J]. Materials (Basel), 2020, 13: 4392
doi: 10.3390/ma13194392
26 Jacob J. Microstructures of TiAl additively manufactured by EBM and LMD [D]. Melbourne: The University of Melbourne, 2020
27 Liu Z Q, Ma R X, Xu G J, et al. Effects of annealing on microstructure and mechanical properties of γ-TiAl alloy fabricated via laser melting deposition [J]. Trans. Nonferrous Met. Soc. China, 2020, 30: 917
doi: 10.1016/S1003-6326(20)65265-7
28 Qu H P, Li P, Zhang S Q, et al. The effects of heat treatment on the microstructure and mechanical property of laser melting deposition γ-TiAl intermetallic alloys [J]. Mater. Des., 2010, 31: 2201
doi: 10.1016/j.matdes.2009.10.045
29 Wu Y, Wang H M, Ma X J, et al. Fabrication of TiAl alloy with no multiple heat-affected bands using continuous direct energy deposition [J]. Mater. Lett., 2020, 281: 128581
doi: 10.1016/j.matlet.2020.128581
30 Cheng F, Wang H M, Wu Y, et al. Microstructure evolution and tensile property of TiAl alloy using continuous direct energy deposition technique [J]. J. Alloys Compd., 2022, 906: 164309
doi: 10.1016/j.jallcom.2022.164309
31 Zhang X Y, Li C W, Zheng M Y, et al. Anisotropic tensile behavior of Ti-47Al-2Cr-2Nb alloy fabricated by direct laser deposition [J]. Addit. Manuf., 2020, 32: 101087
32 Almangour B, Grzesiak D, Yang J M. Selective laser melting of TiB2/316L stainless steel composites: The roles of powder preparation and hot isostatic pressing post-treatment [J]. Powder Technol., 2017, 309: 37
doi: 10.1016/j.powtec.2016.12.073
33 Zhao Z Y, Wang S W, Du W B, et al. Interfacial structures and strengthening mechanisms of in situ synthesized TiC reinforced Ti6Al4V composites by selective laser melting [J]. Ceram. Int., 2021, 47: 34127
doi: 10.1016/j.ceramint.2021.08.323
34 Bai P K, Huo P C, Zhao Z Y, et al. Microstructure evolution and corrosion mechanism of in situ synthesized TiC/TC4 alloy nanocomposites fabricated by laser powder bed fusion [J]. Ceram. Int., 2023, 49: 2752
doi: 10.1016/j.ceramint.2022.09.257
35 Li S, Wei Q S, Shi Y S, et al. Microstructure characteristics of inconel 625 superalloy manufactured by selective laser melting [J]. J. Mater. Sci. Technol., 2015, 31: 946
doi: 10.1016/j.jmst.2014.09.020
36 Caprio L, Demir A G, Chiari G, et al. Defect-free laser powder bed fusion of Ti-48Al-2Cr-2Nb with a high temperature inductive preheating system [J]. J. Phys.: Photonics, 2020, 2: 024001
37 Doubenskaia M, Domashenkov A, Smurov I, et al. Study of selective laser melting of intermetallic TiAl powder using integral analysis [J]. Int. J. Mach. Tools Manuf., 2018, 129: 1
doi: 10.1016/j.ijmachtools.2018.02.003
38 Löber L, Biamino S, Ackelid U, et al. Comparison of selective laser and electron beam melted titanium aluminides [A]. 2011 International Solid Freeform Fabrication Symposium [C]. Austin: University of Texas, 2011: 547
39 Thomas M, Malot T, Aubry P, et al. The prospects for additive manufacturing of bulk TiAl alloy [J]. Mater. High Temp., 2016, 33: 571
doi: 10.1080/09603409.2016.1171510
40 Shi X Z, Wang H X, Feng W W, et al. The crack and pore formation mechanism of Ti-47Al-2Cr-2Nb alloy fabricated by selective laser melting [J]. Int. J. Refract. Met. Hard Mater., 2020, 91: 105247
doi: 10.1016/j.ijrmhm.2020.105247
41 Wang M S, Liu E W, Du Y L, et al. Cracking mechanism and a novel strategy to eliminate cracks in TiAl alloy additively manufactured by selective laser melting [J]. Scr. Mater., 2021, 204: 114151
doi: 10.1016/j.scriptamat.2021.114151
42 Polozov I, Kantyukov A, Popovich V, et al. Microstructure and mechanical properties of TiAl-based alloy produced by selective laser melting [A]. Proceedings of the 29th International Conference on Metallurgy and Materials (METAL 2020) [C]. Brno: TANGER Ltd., 2020: 1037
43 Polozov I, Kantyukov A, Popovich A, et al. Tailoring microstructure of selective laser melted TiAl-alloy with in-situ heat treatment via multiple laser exposure [A]. TMS 2021 150th Annual Meeting & Exhibition Supplemental Proceedings [C]. Pittsburgh: Springer, 2021: 197
44 Mizuta K, Hijikata Y, Fujii T, et al. Characterization of Ti-48Al-2Cr-2Nb built by selective laser melting [J]. Scr. Mater., 2021, 203: 114107
doi: 10.1016/j.scriptamat.2021.114107
45 Yang X, Zhao Z Y, Bai P K, et al. EBSD investigation on the microstructure of Ti48Al2Cr2Nb alloy hot isostatic pressing formed by selective laser melting (SLM) [J]. Mater. Lett., 2022, 309: 131334
doi: 10.1016/j.matlet.2021.131334
46 Ismaeel A, Wang C S, Xu D S. The effects of electromagnetic stirring on microstructure and properties of γ-TiAl based alloys fabricated by selective laser melting technique [J]. Int. J. Aerosp. Mech. Eng., 2020, 14: 131
47 Gussone J, Hagedorn Y C, Gherekhloo H, et al. Microstructure of γ-titanium aluminide processed by selective laser melting at elevated temperatures [J]. Intermetallics, 2015, 66: 133
doi: 10.1016/j.intermet.2015.07.005
48 Zhang S Z. Hot deformation and microstructure and mechanical properties of high Nb containing TiAl based alloy [D]. Harbin: Harbin Institute of Technology, 2013
张树志. 高Nb-TiAl合金高温变形及组织性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2013
49 Li M A. Effect of boron or carbon on the high temperature deformation microstructure and mechanical properties of TiAl alloy [D]. Harbin: Harbin Institute of Technology, 2019
李明骜. B和C元素对TiAl合金高温变形组织及性能影响研究 [D]. 哈尔滨工业大学, 2019
50 Li W, Liu J, Zhou Y, et al. Effect of laser scanning speed on a Ti-45Al-2Cr-5Nb alloy processed by selective laser melting: Microstructure, phase and mechanical properties [J]. J. Alloys Compd., 2016, 688: 626
doi: 10.1016/j.jallcom.2016.07.206
51 Gao P, Huang W P, Yang H H, et al. Cracking behavior and control of β-solidifying Ti-40Al-9V-0.5Y alloy produced by selective laser melting [J]. J. Mater. Sci. Technol., 2020, 39: 144
doi: 10.1016/j.jmst.2019.08.026
52 Löber L, Schimansky F P, Kühn U, et al. Selective laser melting of a beta-solidifying TNM-B1 titanium aluminide alloy [J]. J. Mater. Process. Technol., 2014, 214: 1852
doi: 10.1016/j.jmatprotec.2014.04.002
53 Vogelpoth A, Schleifenbaum J H, Rittinghaus S. Laser additive manufacturing of titanium aluminides for turbomachinery applications [A]. ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition [C]. Phoenix: American Society of Mechanical Engineers, 2019
54 Gussone J, Garces G, Haubrich J, et al. Microstructure stability of γ-TiAl produced by selective laser melting [J]. Scr. Mater., 2017, 130: 110
doi: 10.1016/j.scriptamat.2016.11.028
55 Liu S Y, Shin Y C. Additive manufacturing of Ti6Al4V alloy: A review [J]. Mater. Des., 2019, 164: 107552
doi: 10.1016/j.matdes.2018.107552
56 Murr L E, Gaytan S M, Ceylan A, et al. Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting [J]. Acta Mater., 2010, 58: 1887
doi: 10.1016/j.actamat.2009.11.032
57 Biamino S, Penna A, Ackelid U, et al. Electron beam melting of Ti-48Al-2Cr-2Nb alloy: Microstructure and mechanical properties investigation [J]. Intermetallics, 2011, 19: 776
doi: 10.1016/j.intermet.2010.11.017
58 Baudana G, Biamino S, Klöden B, et al. Electron beam melting of Ti-48Al-2Nb-0.7Cr-0.3Si: Feasibility investigation [J]. Intermetallics, 2016, 73: 43
doi: 10.1016/j.intermet.2016.03.001
59 Schwerdtfeger J, Körner C. Selective electron beam melting of Ti-48Al-2Nb-2Cr: Microstructure and aluminium loss [J]. Intermetallics, 2014, 49: 29
doi: 10.1016/j.intermet.2014.01.004
60 Mohammad A, Al-Ahmari A M, Balla V K, et al. In vitro wear, corrosion and biocompatibility of electron beam melted γ-TiAl [J]. Mater. Des., 2017, 133: 186
doi: 10.1016/j.matdes.2017.07.065
61 Cormier D, Harrysson O, Mahale T, et al. Freeform fabrication of titanium aluminide via electron beam melting using prealloyed and blended powders [J]. Res. Lett. Mater. Sci., 2007, 2007: 034737
62 Ge W J, Guo C, Lin F. Effect of process parameters on microstructure of TiAl alloy produced by electron beam selective melting [J]. Procedia Eng., 2014, 81: 1192
doi: 10.1016/j.proeng.2014.10.096
63 Klassen A, Forster V E, Juechter V, et al. Numerical simulation of multi-component evaporation during selective electron beam melting of TiAl [J]. J. Mater. Process. Technol., 2017, 247: 280
doi: 10.1016/j.jmatprotec.2017.04.016
64 Kim Y K, Youn S J, Kim S W, et al. High-temperature creep behavior of gamma Ti-48Al-2Cr-2Nb alloy additively manufactured by electron beam melting [J]. Mater. Sci. Eng., 2019, A763: 138138
65 Terner M, Biamino S, Epicoco P, et al. Electron beam melting of high niobium containing TiAl alloy: Feasibility investigation [J]. Steel Res. Int., 2012, 83: 943
doi: 10.1002/srin.v83.10
66 Mohammad A, Alahmari A M, Mohammed M K, et al. Effect of energy input on microstructure and mechanical properties of titanium aluminide alloy fabricated by the additive manufacturing process of electron beam melting [J]. Materials (Basel), 2017, 10: 211
doi: 10.3390/ma10020211
67 Seifi M, Salem A A, Satko D P, et al. Effects of HIP on microstructural heterogeneity, defect distribution and mechanical properties of additively manufactured EBM Ti-48Al-2Cr-2Nb [J]. J. Alloys Compd., 2017, 729: 1118
doi: 10.1016/j.jallcom.2017.09.163
68 Todai M, Nakano T, Liu T Q, et al. Effect of building direction on the microstructure and tensile properties of Ti-48Al-2Cr-2Nb alloy additively manufactured by electron beam melting [J]. Addit. Manuf., 2017, 13: 61
69 Cho K, Kobayashi R, Oh J Y, et al. Influence of unique layered microstructure on fatigue properties of Ti-48Al-2Cr-2Nb alloys fabricated by electron beam melting [J]. Intermetallics, 2018, 95: 1
doi: 10.1016/j.intermet.2018.01.009
70 Cakmak E, Nandwana P, Shin D, et al. A comprehensive study on the fabrication and characterization of Ti-48Al-2Cr-2Nb preforms manufactured using electron beam melting [J]. Materialia, 2019, 6: 100284
doi: 10.1016/j.mtla.2019.100284
71 Wartbichler R, Clemens H, Mayer S, et al. On the formation mechanism of banded microstructures in electron beam melted Ti-48Al-2Cr-2Nb and the design of heat treatments as remedial action [J]. Adv. Eng. Mater., 2021, 23: 2101199
doi: 10.1002/adem.v23.12
72 Biamino S, Klöden B, Weiβgärber T, et al. Titanium aluminides for automotive applications processed by electron beam melting [A]. Proceeding of the 2014 World Congress on Powder Metallurgy and Particulate Materials [C]. Orlando, FL, 2014
73 Lin B C, Chen W. Mechanical properties of TiAl fabricated by electron beam melting—A review [J]. China Foundry, 2021, 18: 307
doi: 10.1007/s41230-021-1093-8
74 Wartbichler R, Clemens H, Mayer S. Electron beam melting of a β-solidifying intermetallic titanium aluminide alloy [J]. Adv. Eng. Mater., 2019, 21: 1900800
doi: 10.1002/adem.v21.12
75 Yue H Y, Chen Y Y, Wang X P, et al. Microstructure, texture and tensile properties of Ti-47Al-2Cr-2Nb alloy produced by selective electron beam melting [J]. J. Alloys Compd., 2018, 766: 450
doi: 10.1016/j.jallcom.2018.07.025
76 Chen Y Y, Yue H Y, Wang X P. Microstructure, texture and tensile property as a function of scanning speed of Ti-47Al-2Cr-2Nb alloy fabricated by selective electron beam melting [J]. Mater. Sci. Eng., 2018, A713: 195
77 Yue H Y, Chen Y Y, Wang X P, et al. Effect of beam current on microstructure, phase, grain characteristic and mechanical properties of Ti-47Al-2Cr-2Nb alloy fabricated by selective electron beam melting [J]. J. Alloys Compd., 2018, 750: 617
doi: 10.1016/j.jallcom.2018.03.343
78 Chen Y Y, Yue H Y, Wang X P, et al. Selective electron beam melting of TiAl alloy: Microstructure evolution, phase transformation and microhardness [J]. Mater. Charact., 2018, 142: 584
doi: 10.1016/j.matchar.2018.06.027
79 Kan W, Chen B, Jin C, et al. Microstructure and mechanical properties of a high Nb-TiAl alloy fabricated by electron beam melting [J]. Mater. Des., 2018, 160: 611
doi: 10.1016/j.matdes.2018.09.044
80 Kan W B, Liang Y F, Peng H, et al. Microstructural degradation of Ti-45Al-8Nb alloy during the fabrication process by electron beam melting [J]. JOM, 2017, 69: 2596
doi: 10.1007/s11837-017-2592-3
81 Juechter V, Körner C. Creep properties of Ti-48Al-2Cr-2Nb produced by selective electron beam melting [J]. Key Eng. Mater., 2016, 704: 190
doi: 10.4028/www.scientific.net/KEM.704
82 Lin B C, Chen W, Yang Y, et al. Anisotropy of microstructure and tensile properties of Ti-48Al-2Cr-2Nb fabricated by electron beam melting [J]. J. Alloys Compd., 2020, 830: 154684
doi: 10.1016/j.jallcom.2020.154684
83 Yue H Y. Study on the microstructure and mechanical property of Ti-47Al-2Cr-2Nb alloy fabricated by selective electron beam melting [D]. Harbin: Harbin Institute of Technology, 2019
岳航宇. 电子束选区熔化成形Ti-47Al-2Cr-2Nb合金的组织及力学性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2019
84 Chen W, Yang Y, Liu L L, et al. Microstructure control and tensile properties of EBM γ-TiAl [J]. Aeronaut. Manuf. Technol., 2017, (1-2): 37
陈 玮, 杨 洋, 刘亮亮 等. 电子束增材制造γ-TiAl显微组织调控与拉伸性能研究 [J]. 航空制造技术, 2017, (1-2): 37
85 Kim Y K, Hong J K, Lee K A. Enhancing the creep resistance of electron beam melted gamma Ti-48Al-2Cr-2Nb alloy by using two-step heat treatment [J]. Intermetallics, 2020, 121: 106771
doi: 10.1016/j.intermet.2020.106771
86 Reith M, Franke M, Schloffer M, et al. Processing 4th generation titanium aluminides via electron beam based additive manufacturing—Characterization of microstructure and mechanical properties [J]. Materialia, 2020, 14: 100902
doi: 10.1016/j.mtla.2020.100902
87 Rittinghaus S K, Molina Ramirez V R, Vogelpoth A, et al. Laser based manufacturing of titanium aluminides [J]. MATEC Web Conf., 2020, 321: 08001
88 Kimme T, Seifert M. Laser surface cladding of titanium aluminides [J]. Laser Technik J., 2017, 14: 18
doi: 10.1002/latj.v14.5
89 Mallikarjuna B, Reutzel E W. Reclamation of intermetallic titanium aluminide aero-engine components using directed energy deposition technology [J]. Manufacturing Rev., 2022, 9: 27
doi: 10.1051/mfreview/2022024
90 Sinha A, Swain B, Behera A, et al. A review on the processing of aero-turbine blade using 3D print techniques [J]. J. Manuf. Mater. Process., 2022, 6: 16
91 Kellner T. Avio Aero, a General Electric (GE) Aviation EBM Turbine Blade [EB/OL]. (2021-11-15).
92 Seidel A, Straubel A, Finaske T, et al. Added value by hybrid additive manufacturing and advanced manufacturing approaches [J]. J. Laser Appl., 2018, 30: 032301
93 Kan W B. Processing technology and microstructure control of high Nb-TiAl alloy fabricated by electron beam melting [D]. Beijing: University of Science and Technology Beijing, 2019
阚文斌. 电子束选区熔化技术制备高Nb-TiAl合金的成形工艺和组织调控研究 [D]. 北京: 北京科技大学, 2019
94 Clemens H, Design Mayer S., processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys [J]. Adv. Eng. Mater., 2013, 15: 191
doi: 10.1002/adem.v15.4
95 Wu X H. Review of alloy and process development of TiAl alloys [J]. Intermetallics, 2006, 14: 1114
doi: 10.1016/j.intermet.2005.10.019
96 Appel F, Paul J D H, Oehring M. Gamma Titanium Aluminide Alloys: Science and Technology [M]. Weinheim: John Wiley & Sons, 2011: 465
97 Baumers M, Tuck C, Wildman R, et al. Shape complexity and process energy consumption in electron beam melting: A case of something for nothing in additive manufacturing? [J]. J. Ind. Ecol., 2017, 21(S1): S157
98 Rittinghaus S K, Molina Ramirez V R, Zielinski J, et al. Oxygen gain and aluminum loss during laser metal deposition of intermetallic TiAl [J]. J. Laser Appl., 2019, 31: 042005
99 Rittinghaus S K, Zielinski J. Influence of process conditions on the local solidification and microstructure during laser metal deposition of an intermetallic TiAl alloy (GE4822) [J]. Metall. Mater. Trans., 2021, 52A: 1106
[1] WANG Xiuqi, LI Tianrui, LIU Guohuai, GUO Ruiqi, WANG Zhaodong. Microstructure Evolution and Mechanical Properties of Ti-44Al-5Nb-1Mo-2V-0.2B Alloys in the Cross Hot-Pack Rolling Process[J]. 金属学报, 2024, 60(1): 95-106.
[2] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[3] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[4] TANG Weineng, MO Ning, HOU Juan. Research Progress of Additively Manufactured Magnesium Alloys: A Review[J]. 金属学报, 2023, 59(2): 205-225.
[5] QI Zhao, WANG Bin, ZHANG Peng, LIU Rui, ZHANG Zhenjun, ZHANG Zhefeng. Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects[J]. 金属学报, 2023, 59(10): 1411-1418.
[6] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[7] ZHU Guoliang, KONG Decheng, ZHOU Wenzhe, HE Jian, DONG Anping, SHU Da, SUN Baode. Research Progress on the Crack Formation Mechanism and Cracking-Free Design of γ' Phase Strengthened Nickel-Based Superalloys Fabricated by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 16-30.
[8] LU Haifei, LV Jiming, LUO Kaiyu, LU Jinzhong. Microstructure and Mechanical Properties of Ti6Al4V Alloy by Laser Integrated Additive Manufacturing with Alternately Thermal/Mechanical Effects[J]. 金属学报, 2023, 59(1): 125-135.
[9] WANG Meng, YANG Yongqiang, Trofimov Vyacheslav, SONG Changhui, ZHOU Hanxiang, WANG Di. Effects of Particle Size on Processability of AlSi10Mg Alloy Manufactured by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 147-156.
[10] YANG Chao, LU Haizhou, MA Hongwei, CAI Weisi. Research and Development in NiTi Shape Memory Alloys Fabricated by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 55-74.
[11] PENG Liming, DENG Qingchen, WU Yujuan, FU Penghuai, LIU Ziyi, WU Qianye, CHEN Kai, DING Wenjiang. Additive Manufacturing of Magnesium Alloys by Selective Laser Melting Technology: A Review[J]. 金属学报, 2023, 59(1): 31-54.
[12] YANG Tianye, CUI Li, HE Dingyong, HUANG Hui. Enhancement of Microstructure and Mechanical Property of AlSi10Mg-Er-Zr Alloys Fabricated by Selective Laser Melting[J]. 金属学报, 2022, 58(9): 1108-1117.
[13] CHEN Yuyong, YE Yuan, SUN Jianfei. Present Status for Rolling TiAl Alloy Sheet[J]. 金属学报, 2022, 58(8): 965-978.
[14] LIU Guang, CHEN Peng, YAO Xiyu, CHEN Pu, LIU Xingchen, LIU Chaoyang, YAN Ming. Properties of CrMoTi Medimum-Entropy Alloy and Its In Situ Alloying Additive Manufacturing[J]. 金属学报, 2022, 58(8): 1055-1064.
[15] LIU Renci, WANG Peng, CAO Ruxin, NI Mingjie, LIU Dong, CUI Yuyou, YANG Rui. Influence of Thermal Exposure at 700oC on the Microstructure and Morphology in the Surface of β-Solidifying γ-TiAl Alloys[J]. 金属学报, 2022, 58(8): 1003-1012.
No Suggested Reading articles found!