Please wait a minute...
Acta Metall Sin  2025, Vol. 61 Issue (1): 154-164    DOI: 10.11900/0412.1961.2024.00272
Research paper Current Issue | Archive | Adv Search |
High-Temperature Creep Behavior of Selective Laser Melting Manufactured Al-Si-Fe-Mn-Ni Alloy
HAN Ying1, WU Yuhang1, ZHAO Chunlu2, ZHANG Jingshi1, LI Zhenmin2, RAN Xu1()
1 Key Laboratory of Advanced Structural Materials (Ministry of Education), School of Materials Science and Engineering, Changchun University of Technology, Changchun 130012, China
2 Beijing Baohang Advanced Materials Co. Ltd., Beijing 101300, China
Cite this article: 

HAN Ying, WU Yuhang, ZHAO Chunlu, ZHANG Jingshi, LI Zhenmin, RAN Xu. High-Temperature Creep Behavior of Selective Laser Melting Manufactured Al-Si-Fe-Mn-Ni Alloy. Acta Metall Sin, 2025, 61(1): 154-164.

Download:  HTML  PDF(4477KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The development of high-temperature creep-resistant Al alloys is essential for manufacturing aerospace and transportation equipment. Conventional creep-resistant Al alloys have several limitations, including high costs, complex heat treatment processes, and challenging processing requirements. Selective laser melting (SLM) technology enables the fabrication of metal materials with ultrafine microstructures and high concentrations of strengthening phases due to its rapid cooling rates, substantial temperature gradients, and unique thermal cycling. This capability provides a promising path for the development of next-generation creep-resistant Al alloys. In this study, a novel Al-9Si-3Fe-2Mn-Ni (mass fraction, %) alloy using the SLM technique was developed. This Al-Si alloy was engineered by controlling the diffusion of slow-diffusing elements and intermetallic compounds (IMCs) that strengthen the material. The high-temperature creep behavior of this alloy was evaluated through uniaxial tensile creep experiments conducted at varying deformation temperatures (300-400 oC) and applied stresses (33-132 MPa). The experimental results demonstrate that the alloy exhibits good creep performance under the experimental conditions. The stress exponent ranged from 6.4 to 13.6, showing a decreasing trend with increasing temperature. The creep deformation mechanism is known as dislocation creep. Below 350 oC, the continuous Al-Si eutectic network reduces the overall stress via load transfer, with IMCs strengthening the alloy via the Orowan mechanism. At 400 oC, the Al-Si eutectic structure fractures and dissolves, with the IMCs and dispersed Si phases providing the primary strengthening mechanism. Increased applied stress amplifies the dislocation slip systems within the alloy, intensifying the interactions between dislocations and precipitates, leading to destabilization and deformation and ultimately reducing creep life.

Key words:  aluminum alloy      selective laser melting      creep behavior      dislocation      microstructure evolution     
Received:  14 August 2024     
ZTFLH:  TG132.3  
Fund: Jilin Scientific and Technological Development Program(20220201106GX);National Natural Science Foundation of China(51974032);National Natural Science Foundation of China(52174355)
Corresponding Authors:  RAN Xu, professor, Tel: 15526853785, E-mail: ranxu@ccut.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2024.00272     OR     https://www.ams.org.cn/EN/Y2025/V61/I1/154

Fig.1  Initial microstructure of selective laser melted (SLMed) Al-Si-Fe-Mn-Ni alloy (MRD—multiples of random distribution)
(a) inverse pole figure (IPF) map in XY plane
(b) IPF map in XZ plane (Yellow dashed line represents the melt pool boundary)
(c) TEM image (Insets show the corresponding EDS results)
(d) high magnification bright field (BF) image of intermetallic compounds (IMCs) and Si phases (Inset shows the possible atomic occupancy information in IMC)
(e) selected area electron diffraction (SAED) image of IMC
Fig.2  Simulated phase diagram of SLMed Al-Si-Fe-Mn-Ni alloy (Red arrow represents IMC phase formation)
Fig.3  High-temperature creep properties of SLMed Al-Si-Fe-Mn-Ni alloy and their comparisons with other aluminum alloys[31-43] (n—creep stress exponent)
(a) 300-350 oC (b) 400 oC
Fig.4  EBSD images near the fracture of SLMed Al-Si-Fe-Mn-Ni alloy after creeping at temperature of 350 oC and stresses of 60 (a, c) and 93 MPa (b, d) (LAGB—low angle grain boundary, HAGB—high angle grain boundary; red arrows in Figs.4c and d represent slip directions)
(a, b) IPF images (c, d) slip trace analysis of the same oriented grains
Fig.5  Schmid factors (a, b), geometric necessary dislocations (GNDs) density (ρGND represent GND density) (c, d), kernel average misorientations (KAMs) (e, f), average Schmid factor statistics (g), average GND statistics (h), and average KAM statistics (i) of SLMed Al-Si-Fe-Mn-Ni alloy after creeping at 350 oC (Black circles represent local high-density dislocation regions)
(a, c, e) under stress of 60 MPa (b, d, f) under stress of 93 MPa
Fig.6  TEM images of the deformed microstructures near the fracture of SLMed Al-Si-Fe-Mn-Ni alloy under conditions of 350 oC and 60 MPa (White arrows represent dislocation cells, blue arrows represent Si phases, green arrows represent Al15(Fe, Mn, Ni)3Si2, black arrows represent dislocations; green, white, and blue areas are the corresponding high magnified images of IMC phase, Al matrix, and Si phase)
(a) microscopic morphology and corresponding EDS results
(b) BF image of the Al-Si eutectic structure and IMCs
(c) interaction behavior of IMCs and dispersed Si phases with dislocations
(d) high resolution TEM (HRTEM) image of IMCs (Inset shows SAED result of the IMC)
(e) HRTEM image of the Si phase (Inset shows magnification of local interface structure)
(f) SAED image of the Si phase (Inset shows atomic occupancy information)
Fig.7  EBSD images of SLMed Al-Si-Fe-Mn-Ni alloy after creeping at temperature of 400 oC and stress of 60 MPa (Black circles in Fig.7b represent local high-density dislocation regions)
(a) IPF image (b) GND distribution
Fig.8  TEM images of the deformed microstructure near the fracture of SLMed Al-Si-Fe-Mn-Ni alloy after creeping under conditions of 400 oC and 60 MPa (White arrows represent dislocations, blue arrows represent Si phases, green arrows represent Al15(Fe, Mn, Ni)3Si2)
(a) BF image
(b) interaction behavior of IMCs and dispersed Si phases with dislocation and corresponding EDS results
(c) high-magnification morphology of IMC and Si phase
(d) SAED results of IMC and Si phase
(e) HRTEM image of the dispersed Si phase
1 Wang L, Liang X P, Liu B, et al. Stacking fault formation in perovskite Ti3AlC carbides in a TiAl based alloy during creep at 800 oC[J]. Scr. Mater., 2023, 222: 115034
2 Liu X Y, Pan Q L, Lu Z L, et al. Creep behavior of Al-Cu-Mg-Ag heat-resistant alloy at elevated temperature[J]. Acta Metall. Sin., 2011, 47: 53
刘晓艳, 潘清林, 陆智伦 等. Al-Cu-Mg-Ag耐热铝合金高温蠕变行为[J]. 金属学报, 2011, 47: 53
doi: 10.3724/SP.J.1037.2010.00369
3 Feng Q, Lu S, Li W D, et al. Recent progress in alloy design and creep mechanism of γ'-strengthened Co-based superalloys[J]. Acta Metall. Sin., 2023, 59: 1125
冯 强, 路 松, 李文道 等. γ'相强化钴基高温合金成分设计与蠕变机理研究进展[J]. 金属学报, 2023, 59: 1125
4 Ma Y, Langdon T G. Creep behavior of an Al-6061 metal matrix composite produced by liquid metallurgy processing[J]. Mater. Sci. Eng., 1997, A230: 183
5 Yang J X, Li J G, Wang M, et al. Effects of heat treatment process on the microstructure and properties of a new cast nickel-based superalloy[J]. Acta Metall. Sin., 2012, 48: 654
杨金侠, 李金国, 王 猛 等. 热处理工艺对一种新型铸造镍基高温合金的组织和性能影响[J]. 金属学报, 2012, 48: 654
doi: 10.3724/SP.J.1037.2012.00061
6 Cai C, Geng H F, Zhang Z. Temperature-dependent cyclic response and microstructure of AlSi10Mg(Cu) alloy[J]. Mater. Charact., 2018, 141: 148
7 Xiao Y K, Yang Q, Bian Z Y, et al. Microstructure, heat treatment and mechanical properties of TiB2/Al-7Si-Cu-Mg alloy fabricated by selective laser melting[J]. Mater. Sci. Eng., 2021, A809: 140951
8 Xue H, Yang C, De Geuser F, et al. Highly stable coherent nanoprecipitates via diffusion-dominated solute uptake and interstitial ordering[J]. Nat. Mater., 2023, 22: 434
9 Bai X R, Xie H N, Zhang X, et al. Heat-resistant super-dispersed oxide strengthened aluminium alloys[J]. Nat. Mater., 2024, 23: 747
10 Rong X D, Zhao D D, Chen X F, et al. Towards the work hardening and strain delocalization achieved via in-situ intragranular reinforcement in Al-CuO composite[J]. Acta Mater., 2023, 256: 119110
11 Cai X M, Zhang W, Fan Z Q, et al. Damage modes and response mechanisms of AlSi10Mg porous structures under different loading strain rates[J]. Acta Metall. Sin., 2024, 60: 857
doi: 10.11900/0412.1961.2023.00440
蔡宣明, 张 伟, 范志强 等. AlSi10Mg多孔结构在不同加载应变率下的损伤模式及响应机制[J]. 金属学报, 2024, 60: 857
doi: 10.11900/0412.1961.2023.00440
12 Gazizov M, Kaibyshev R. Effect of pre-straining on the aging behavior and mechanical properties of an Al-Cu-Mg-Ag alloy[J]. Mater. Sci. Eng., 2015, A625: 119
13 Gao J B, Li Z C, Liu J, et al. Current situation and prospect of computationally assisted design in high-performance additive manufactured aluminum alloys: A review[J]. Acta Metall. Sin., 2023, 59: 87
doi: 10.11900/0412.1961.2022.00430
高建宝, 李志诚, 刘 佳 等. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59: 87
doi: 10.11900/0412.1961.2022.00430
14 Yang T Y, Cui L, He D Y, et al. Enhancement of microstructure and mechanical property of AlSi10Mg-Er-Zr alloys fabricated by selective laser melting[J]. Acta Metall. Sin., 2022, 58: 1108
杨天野, 崔 丽, 贺定勇 等. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58: 1108
doi: 10.11900/0412.1961.2021.00085
15 Bahl S, Wu T, Michi R A, et al. An additively manufactured near-eutectic Al-Ce-Ni-Mn-Zr alloy with high creep resistance[J]. Acta Mater., 2024, 268: 119787
16 Griffiths S, Croteau J R, Rossell M D, et al. Coarsening- and creep resistance of precipitation-strengthened Al-Mg-Zr alloys processed by selective laser melting[J]. Acta Mater., 2020, 188: 192
doi: 10.1016/j.actamat.2020.02.008
17 Read N, Wang W, Essa K, et al. Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development[J]. Mater. Des., 2015, 65: 417
18 Huang S, Guo S Q, Zhou B, et al. Microstructure and properties of AlSi7Mg alloy fabricated by selective laser melting[J]. China Foundry, 2021, 18: 416
doi: 10.1007/s41230-021-1004-z
19 Wu J, Wang X Q, Wang W, et al. Microstructure and strength of selectively laser melted AlSi10Mg[J]. Acta Mater., 2016, 117: 311
20 Cai Q, Fang C M, Lordan E, et al. A novel Al-Si-Ni-Fe near-eutectic alloy for elevated temperature applications[J]. Scr. Mater., 2023, 237: 115707
21 Jansen A M, Dunand D C. Creep of metals containing high volume fractions of unshearable dispersoids: II. Experiments in the Al Al2O3 system and comparison to models[J]. Acta Mater., 1997, 45: 4583
22 Knipling K E, Dunand D C. Creep resistance of cast and aged Al-0.1Zr and Al-0.1Zr-0.1Ti (at.%) alloys at 300-400 oC[J]. Scr. Mater., 2008, 59: 387
23 Guo S K, Ma Z L, Xia G H, et al. Pursuing ultrastrong and ductile medium entropy alloys via architecting nanoprecipitates-enhanced hierarchical heterostructure[J]. Acta Mater., 2024, 263: 119492
24 Dragone T L, Nix W D. Geometric factors affecting the internal stress distribution and high temperature creep rate of discontinuous fiber reinforced metals[J]. Acta Mater., 1990, 38: 1941
25 Attar H, Ehtemam-Haghighi S, Kent D, et al. Recent developments and opportunities in additive manufacturing of titanium-based matrix composites: A review[J]. Int. J. Mach. Tool Manuf., 2018, 133: 85
26 Corby R N, Black P J. The structure of α-(AlFeSi) by anomalous-dispersion methods[J]. Acta Cryst., 1977, 33B: 3468
27 Boyd J D, Nicholson R B. The coarsening behaviour of θ″ and θ′ precipitates in two Al-Cu alloys[J]. Acta Metall., 1971, 19: 1379
28 Martin J H, Yahata B D, Hundley J M, et al. 3D printing of high-strength aluminium alloys[J]. Nature, 2017, 549: 365
29 Mclean M. On the threshold stress for dislocation creep in particle strengthened alloys[J]. Acta Metall., 1985, 33: 545
30 Frost H J, Ashby M F. Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics[M]. Oxford: Pergamon Press, 1982: 166
31 Zhang M, Lewis R J, Gibeling J C. Mechanisms of creep deformation in a rapidly solidified Al-Fe-V-Si alloy[J]. Mater. Sci. Eng., 2021, A805: 140796
32 Park K T, Mohamed F A. Creep strengthening in a discontinuous SiC-Al composite[J]. Metall. Mater. Trans., 1995, 26A: 3119
33 Uzan N E, Shneck R, Yeheskel O, et al. High-temperature mechanical properties of AlSi10Mg specimens fabricated by additive manufacturing using selective laser melting technologies (AM-SLM)[J]. Addit. Manuf., 2018, 24: 257
34 Wakashima K, Moriyama T, Mori T. Steady-state creep of a particulate SiC/6061 Al composite[J]. Acta Mater., 2000, 48: 891
35 De Luca A, Seidman D N, Dunand D C. Mn and Mo additions to a dilute Al-Zr-Sc-Er-Si-based alloy to improve creep resistance through solid-solution- and precipitation-strengthening[J]. Acta Mater., 2020, 194: 60
36 Ringer S P, Yeung W, Muddle B C, et al. Precipitate stability in Al-Cu-Mg-Ag alloys aged at high temperatures[J]. Acta Metall. Mater., 1994, 42: 1715
37 Ng D S, Dunand D C. Aging- and creep-resistance of a cast hypoeutectic Al-6.9Ce-9.3Mg (wt.%) alloy[J]. Mater. Sci. Eng., 2020, A786: 139398
38 Farkoosh A R. Development of creep-resistant Al-Si cast alloys strengthened with nanoscale dispersoids[D]. Montreal: McGill University, 2015
39 Farkoosh A R, Chen X G, Pekguleryuz M. Interaction between molybdenum and manganese to form effective dispersoids in an Al-Si-Cu-Mg alloy and their influence on creep resistance[J]. Mater. Sci. Eng., 2015, A627: 127
40 Fiedler T, Dörries K, Rösler J. Selective laser melting of Al and AlSi10Mg: Parameter study and creep experiments[J]. Prog. Addit. Manuf., 2022, 7: 583
41 Michi R A, Sisco K, Bahl S, et al. A creep-resistant additively manufactured Al-Ce-Ni-Mn alloy[J]. Acta Mater., 2022, 227: 117699
42 Wu T, Poplawsky J D, Allard L F, et al. Microstructure and strengthening of Al-6Ce-3Ni-0.7Fe (wt%) alloy manufactured by laser powder-bed fusion[J]. Addit. Manuf., 2023, 78: 103858
43 Rakhmonov J U, Weiss D, Dunand D C. Solidification microstructure, aging evolution and creep resistance of laser powder-bed fused Al-7Ce-8Mg (wt%)[J]. Addit. Manuf., 2022, 55: 102862
44 Qu P F, Yang W C, Liu C, et al. Tensile deformation dominated by matrix dislocations at intermediate temperatures revealed using in-situ EBSD in superalloys[J]. Mater. Res. Lett., 2024, 12: 116
45 Dong D Y, Liu Y, Wang L, et al. Effect of strain rate on dynamic deformation behavior of DP780 steel[J]. Acta Metall. Sin., 2013, 49: 159
doi: 10.3724/SP.J.1037.2012.00515
董丹阳, 刘 杨, 王 磊 等. 应变速率对DP780钢动态拉伸变形行为的影响[J]. 金属学报, 2013, 49: 159
doi: 10.3724/SP.J.1037.2012.00515
46 Li B B, Li Q A, Chen X Y, et al. High temperature creep behavior of Mg-9Gd-4Y-1Zn-0.5Zr alloy[J]. Trans. Mater. Heat Treat., 2018, 39(6): 49
孟波波, 李全安, 陈晓亚 等. Mg-9Gd-4Y-1Zn-0.5Zr合金的高温蠕变行为[J]. 材料热处理学报, 2018, 39(6): 49
doi: 10.13289/j.issn.1009-6264.2018-0046
47 Theska F, Yang Y, Sisco K D, et al. On the high-temperature stability of the Al8Cu3Ce intermetallic in an additively manufactured Al-Cu-Ce-Zr alloy[J]. Mater. Charact., 2022, 191: 112109
48 Zhao Y H, Chang Y P, Li X P, et al. Phase precipitation and strengthening behavior of a novel polycrystalline Ni3Al-based intermetallic alloy at 1100 oC[J]. Acta Mater., 2024, 265: 119601
49 Liu Y, Michi R A, Dunand D C. Cast near-eutectic Al-12.5wt.% Ce alloy with high coarsening and creep resistance[J]. Mater. Sci. Eng., 2019, A767: 138440
50 Carreño F, Ruano O A. Separated contribution of particles and matrix on the creep behavior of dispersion strengthened materials[J]. Acta Mater., 1998, 46: 159
51 Spigarelli S, Cabibbo M, Evangelista E, et al. Evaluation of the creep properties of an Al-17Si-1Mg-0.7Cu alloy[J]. Mater. Lett., 2002, 56: 1059
52 Rösler J, Bao G, Evans A G. The effects of diffusional relaxation on the creep strength of composites[J]. Acta Metall. Mater., 1991, 39: 2733
53 Chesser I, Koju R K, Vellore A, et al. Atomistic modeling of metal-nonmetal interphase boundary diffusion[J]. Acta Mater., 2023, 257: 119172
54 Zan Y N, Zhou Y T, Liu Z Y, et al. Microstructure and mechanical properties of (B4C + Al2O3)/Al composites designed for neutron absorbing materials with both structural and functional usages[J]. Mater. Sci. Eng., 2020, A773: 138840
55 Peng H L, Jin C, Dong B X, et al. In-situ tailoring microstructure well-balanced strength and ductility in Al-Cu alloy[J]. Mater. Sci. Eng., 2023, A880: 145350
56 Li Z, Zhang Z, Chen X G. Effect of metastable Mg2Si and dislocations on α-Al(MnFe)Si dispersoid formation in Al-Mn-Mg 3xxx alloys[J]. Metall. Mater. Trans., 2018, 49A: 5799
[1] LU Jianlin, REN Huayong, XIE An, WANG Jiantong, HE Feng. Rapid Solidification Behavior and Microstructure Regulation of Ni43.5Co19Cr10Fe10Al15Ti2Mo0.5 Eutectic High-Entropy Alloy[J]. 金属学报, 2025, 61(1): 191-202.
[2] YU Dong, MA Weilong, WANG Yali, WANG Jincheng. Phase Field Modeling of Microstructure Evolution During Solidification and Subsequent Solid-State Phase Transformation of Au-Pt Alloys[J]. 金属学报, 2025, 61(1): 109-116.
[3] WANG Lin, WEI Chen, WANG Lei, WANG Jun, LI Jinshan. Simulation of Core-Shell Structure Evolution of Cu-Co Immiscible Alloys[J]. 金属学报, 2024, 60(9): 1239-1249.
[4] CAI Xuanming, ZHANG Wei, FAN Zhiqiang, GAO Yubo, WANG Junyuan, ZHANG Zhujun. Damage Modes and Response Mechanisms of AlSi10Mg Porous Structures Under Different Loading Strain Rates[J]. 金属学报, 2024, 60(7): 857-868.
[5] WANG Lijia, HU Li, MIAO Tianhu, ZHOU Tao, HE Qubo, LIU Xiangguo. Effect of Pre-Deformation on Mechanical Behavior and Microstructure Evolution of AZ31 Mg Alloy Sheet with Bimodal Non-Basal Texture at Room Temperature[J]. 金属学报, 2024, 60(7): 881-889.
[6] BAI Zhiwen, DING Zhigang, ZHOU Ailong, HOU Huaiyu, LIU Wei, LIU Feng. Molecular Dynamics Simulation of Thermo-Kinetics of Tensile Deformation of α-Fe Single Crystal[J]. 金属学报, 2024, 60(6): 848-856.
[7] YANG Weiyang, LI Xianhao, ZHAO Pengfei, YU Haibin, ZHAO Songshan, LUO Haiwen. Changes in the Microstructures and Inhibitors of Grain-Oriented Silicon Steel Under Different Normalizing Processes[J]. 金属学报, 2024, 60(5): 605-615.
[8] LI Zhenliang, ZHANG Xinlei, TIAN Dongkuo. Effect of Multi-Pass Compression Deformation on Microstructure Evolution of AZ80 Magnesium Alloy[J]. 金属学报, 2024, 60(3): 311-322.
[9] BAI Juju, LI Jianjian, FU Chonglong, CHEN Shuangjian, LI Zhijun, LIN Jun. Effect of He Ion Irradiation on the GH3535 Weld Metal at High Temperature[J]. 金属学报, 2024, 60(3): 299-310.
[10] REN Junqiang, SHAO Shan, WANG Qi, LU Xuefeng, XUE Hongtao, TANG Fuling. Molecular Dynamics Simulation of Tensile Mechanical Properties and Deformation Mechanism of Oxygen-Containing Nano-Polycrystalline α-Ti[J]. 金属学报, 2024, 60(2): 220-230.
[11] WANG Yong, ZHANG Weiwen, YANG Chao, WANG Zhi. Mechanical Properties and Deformation Behavior of a Nanostructured Aluminum Alloy Toughened by Titanium Alloy Base Three-Dimensional Lattice Structure[J]. 金属学报, 2024, 60(2): 247-260.
[12] ZHANG Nan, ZHANG Haiwu, WANG Miaohui. Tensile Mechanical Properties of Micro-Selective Laser Melted 316L Stainless Steel[J]. 金属学报, 2024, 60(2): 211-219.
[13] GENG Ruwei, WANG Lin, WEI Zhengying, MA Ninshu. Microstructure Evolution and Epitaxial Growth Characteristics of Droplet and Arc Deposition Additive Manufacturing for Aluminum Alloy[J]. 金属学报, 2024, 60(11): 1584-1594.
[14] ZHANG Zhenwu, LI Jikang, XU Wenhe, SHEN Muyu, QI Leiyi, ZHENG Keying, LI Wei, WEI Qingsong. Effects of Overlapping Process on Grain Orientation and Microstructure of Nickel-Based Single-Crystal Superalloy DD491 Fabricated by Selective Laser Melting[J]. 金属学报, 2024, 60(11): 1471-1486.
[15] CHEN Yuyong, SHI Guohao, DU Zhiming, ZHANG Yu, CHANG Shuai. Research Progress on Additive Manufacturing TiAl Alloy[J]. 金属学报, 2024, 60(1): 1-15.
No Suggested Reading articles found!