|
|
Non-Equilibrium Solidification Behavior and Microstructure Evolution of Undercooled Fe7(CoNiMn)80B13 Eutectic High-Entropy Alloy |
WANG Yeqing, FU Ke, ZHAO Yongzhu, SU Liji, CHEN Zheng( ) |
School of Material Science and Physics, China University of Mining and Technology, Xuzhou 221116, China |
|
Cite this article:
WANG Yeqing, FU Ke, ZHAO Yongzhu, SU Liji, CHEN Zheng. Non-Equilibrium Solidification Behavior and Microstructure Evolution of Undercooled Fe7(CoNiMn)80B13 Eutectic High-Entropy Alloy. Acta Metall Sin, 2025, 61(1): 143-153.
|
Abstract Eutectic high-entropy alloys show excellent properties, such as casting property, mechanical properties, corrosion resistance properties, and so on. They are usually consisted of two kinds of phases, which would be compete with each other in the non-equilibrium solidification process. Fe7(CoNiMn)80B13 eutectic high-entropy alloy has complex phase transition and microstructure evolution behavior during the non-equilibrium solidification process. In order to reveal the non-equilibrium solidification characteristics and microstructure evolution mechanism, Fe7(CoNiMn)80B13 eutectic high-entropy alloy was undercooled by the molten glass fluxing method in this work. The results show that the solidification path and microstructure of undercooled Fe7(CoNiMn)80B13 eutectic high-entropy alloy can be divided into 5 categories. At low undercooling (ΔT < 57 K), the cooling curve has only one recalescence phenomenon. The corresponding solidification microstructure is primary B-rich phase + peritectic α-(Fe, Co, Ni, Mn) phase + eutectic structure. At medium undercooling (ΔT = 57~111 K), there are two recalescence phenomena on the cooling curve. The corresponding solidification microstructure can be divided into two types: the first is primary M23B6 dendrite + secondary α-(Fe, Co, Ni, Mn) halo + regular eutectic; the second is primary α-(Fe, Co, Ni, Mn) dendrite + regular eutectic. At high undercooling (ΔT = 139~198 K), the cooling curve shows a single recalescence phenomenon again. The corresponding solidification microstructure can be divided into two types: the first is a mixture of B-rich phase + M23B6 + α-(Fe, Co, Ni, Mn) three phases, and the second is M23B6 + α-(Fe, Co, Ni, Mn) anomalous eutectic. Note that the type of primary phase transited for twice with the increase of undercooling: B-rich phase→M23B6 phase→α-(Fe, Co, Ni, Mn) phase. In addition, the orientation relationship of two eutectic phases in regular eutectic at low undercooling is consistent with that of two phases in anomalous eutectic at high undercooling.
|
Received: 16 April 2024
|
|
Fund: National Natural Science Foundation of China(52201055);National Natural Science Foundation of China(52274401) |
Corresponding Authors:
CHEN Zheng, professor, Tel: 13655207199, E-mail: chenzheng1218@163.com
|
1 |
Lu Y P, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: Eutectic high-entropy alloys[J]. Sci. Rep., 2014, 4: 6200
doi: 10.1038/srep06200
pmid: 25160691
|
2 |
Jiao W N, Lu Y P, Cao Z Q, et al. Progress and prospect of eutectic high entropy alloys[J]. Spec. Cast. Nonferrous Alloys, 2022, 42: 265
|
|
焦文娜, 卢一平, 曹志强 等. 共晶高熵合金的研究进展及展望[J]. 特种铸造及有色合金, 2022, 42: 265
doi: 10.15980/j.tzzz.2022.03.001
|
3 |
Wu P H, Liu N, Yang W, et al. Microstructure and solidification behavior of multicomponent CoCrCu x FeMoNi high-entropy alloys[J]. Mater. Sci. Eng., 2015, A642: 142
|
4 |
Shukla S, Wang T H, Cotton S, et al. Hierarchical microstructure for improved fatigue properties in a eutectic high entropy alloy[J]. Scr. Mater., 2018, 156: 105
|
5 |
Wang M L, Lu Y P, Wang T M, et al. A novel bulk eutectic high-entropy alloy with outstanding as-cast specific yield strengths at elevated temperatures[J]. Scr. Mater., 2021, 204: 114132
|
6 |
Jiang H, Han K M, Gao X X, et al. A new strategy to design eutectic high-entropy alloys using simple mixture method[J]. Mater. Des., 2018, 142: 101
|
7 |
Jiang H, Qiao D X, Lu Y P, et al. Direct solidification of bulk ultrafine-microstructure eutectic high-entropy alloys with outstanding thermal stability[J]. Scr. Mater., 2019, 165: 145
|
8 |
Rogal Ł, Morgiel J, Świątek Z, et al. Microstructure and mechanical properties of the new Nb25Sc25Ti25Zr25 eutectic high entropy alloy[J]. Mater. Sci. Eng., 2016, A651: 590
|
9 |
Ye X C, Xiong J Y, Wu X, et al. A new infinite solid solution strategy to design eutectic high entropy alloys with B2 and BCC structure[J]. Scr. Mater., 2021, 199: 113886
|
10 |
Wang F J, Zhang Y, Chen G L, et al. Cooling rate and size effect on the microstructure and mechanical properties of AlCoCrFeNi high entropy alloy[J]. J. Eng. Mater. Technol., 2009, 131: 034501
|
11 |
Li J S, Jia W J, Wang J, et al. Enhanced mechanical properties of a CoCrFeNi high entropy alloy by supercooling method[J]. Mater. Des., 2016, 95: 183
|
12 |
Cao L G, Zhu L, Zhang L L, et al. Microstructure evolution and mechanical properties of rapid solidified AlCoCrFeNi2.1 eutectic high entropy alloy[J]. Chin. J. Mater. Res., 2019, 33: 650
|
|
曹雷刚, 朱 琳, 张磊磊 等. 快速凝固AlCoCrFeNi2.1共晶高熵合金的微观组织演变和力学性能[J]. 材料研究学报, 2019, 33: 650
doi: 10.11901/1005.3093.2019.069
|
13 |
Zhao K, Wu S, Jiang S Y, et al. Microstructural refinement and anomalous eutectic structure induced by containerless solidification for high-entropy Fe-Co-Ni-Si-B alloys[J]. Intermetallics, 2020, 122: 106812
|
14 |
Yan P X, Chang J, Wang W L, et al. Eutectic growth kinetics and microscopic mechanical properties of rapidly solidified CoCrFeNiMo0.8 high entropy alloy[J]. Acta Mater., 2022, 237: 118149
|
15 |
Nassar A, Mullis A, Cochrane R, et al. Rapid solidification of AlCoCrFeNi2.1 high-entropy alloy[J]. J. Alloys Compd., 2022, 900: 163350
|
16 |
Guo Y N, Su H J, Zhou H T, et al. Unique strength-ductility balance of AlCoCrFeNi2.1 eutectic high entropy alloy with ultra-fine duplex microstructure prepared by selective laser melting[J]. J. Mater. Sci. Technol., 2022, 111: 298
|
17 |
Su J, Chen S Q, Ding Z Y, et al. Solidification behavior of eutectic high entropy alloy fabricated by selective laser melting[J]. Chin. J. Nonferrous Met., 2022, 32: 658
|
|
苏 捷, 陈仕奇, 丁正阳 等. 选区激光熔化共晶高熵合金凝固行为[J]. 中国有色金属学报, 2022, 32: 658
|
18 |
Liang X Y, Chen J, Yao Y H, et al. A novel nano-spaced coherent FCC1/FCC2 eutectic high entropy alloy[J]. Mater. Lett., 2023, 337: 133952
|
19 |
Qi T L, Li Y H, Takeuchi A, et al. Soft magnetic Fe25Co25Ni25(B, Si)25 high entropy bulk metallic glasses[J]. Intermetallics, 2015, 66: 8
|
20 |
Zhang Z Q, Song K K, Guo S, et al. Optimizing mechanical properties of Fe26.7Co26.7Ni26.7Si8.9B11 high entropy alloy by inducing hypoeutectic to quasi-duplex microstructural transition[J]. Sci. Rep., 2019, 9: 360
|
21 |
Fu K, Yin B J, Zhao Y Z, et al. Effect of boron content on microstructure evolution and crystallization behavior of Fe7(CoNi)93 - x B x (x = 15, 18, 21) eutectic high-entropy alloys[J]. Intermetallics, 2024, 165: 108131
|
22 |
Gao J R, Kao A, Bojarevics V, et al. Modeling of convection, temperature distribution and dendritic growth in glass-fluxed nickel melts[J]. J. Cryst. Growth, 2017, 471: 66
|
23 |
Wang Y Q, Shan C X, Wang L, et al. A new complex-regular eutectic in the Fe7(CoNiMn)93 - x B x high entropy alloys[J]. J. Mater. Res. Technol., 2024, 30: 4521
|
24 |
Yang C L, Liu F, Yang G C, et al. Structure evolution upon non-equilibrium solidification of bulk undercooled Fe-B system[J]. J. Cryst. Growth, 2009, 311: 404
|
25 |
Wang Y Q, Gao J R, Kolbe M, et al. Metastable solidification of hypereutectic Co2Si-CoSi composition: Microstructural studies and in-situ observations[J]. Acta Mater., 2018, 142: 172
|
26 |
Zhao R J, Wang Y Q, Gao J R, et al. In situ and ex situ studies of anomalous eutectic formation in undercooled Ni-Sn alloys[J]. Acta Mater., 2020, 197: 198
|
27 |
Miettinen J, Vassilev G. Thermodynamic description of ternary Fe-B-X systems. Part 2: Fe-B-Ni[J]. Arch. Metall. Mater., 2014, 59: 609
|
28 |
van Loo F J J, van Beek J A. Reactions and phase relations in the systems Fe-Ni-B and Fe-Co-B[J]. Z. Metallkd., 1989, 80: 245
|
29 |
Miettinen J, Lilova K, Vassilev G. Thermodynamic description of ternary Fe-B-X systems. Part 3: Fe-B-Mn[J]. Arch. Metall. Mater., 2014, 59: 1481
|
30 |
Jackson K A, Hunt J D. Lamellar and rod eutectic growth[A]. Dynamics of Curved Fronts[M]. Pittsburgh: Academic Press, 1988: 363
|
31 |
Wang Y Q, Gao J R, Shahani A J. Effects of Al substitution for Zn on the non-equilibrium solidification behavior of Zn-3Mg alloys[A]. Materials Processing Fundamentals 2020[M]. Cham: Springer, 2020: 23
|
32 |
Kattamis T Z, Flemings M C. Structure of undercooled Ni-Sn eutectic[J]. Metall. Trans., 1970, 1B: 1449
|
33 |
Wu Y, Piccone T J, Shiohara Y, et al. Dendritic growth of undercooled nickel-tin: Part III[J]. Metall. Trans., 1988, 19A: 1109
|
34 |
Jones B L. Growth mechanisms in undercooled eutectics[J]. Metall. Trans., 1971, 2: 2950
|
35 |
Tewari S N. Effect of undercooling on the microstructure of Ni-35 at. pct Mo (eutectic) and Ni-38 at. pct Mo (hypereutectic) alloys[J]. Metall. Trans., 1987, 18A: 525
|
36 |
Zhao S, Li J F, Liu L, et al. Eutectic growth from cellular to dendritic form in the undercooled Ag-Cu eutectic alloy melt[J]. J. Cryst. Growth, 2009, 311: 1387
|
37 |
Liu L, Li J F, Zhou Y H. Solidification interface morphology pattern in the undercooled Co-24.0at.% Sn eutectic melt[J]. Acta Mater., 2011, 59: 5558
|
38 |
Goetzinger R, Barth M, Herlach D M. Mechanism of formation of the anomalous eutectic structure in rapidly solidified Ni-Si, Co-Sb and Ni-Al-Ti alloys[J]. Acta Metall., 1998, 46: 1647
|
39 |
Lai C, Wang H F, Pu Q, et al. Phase selection and re-melting-induced anomalous eutectics in undercooled Ni-38 wt% Si alloys[J]. J. Mater. Sci., 2016, 51: 10990
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|