|
|
Corrosion Behavior of AlCoCrFeNi2.1 Eutectic High-Entropy Alloy in Sulfuric Acid Solution |
HU Wenbin, ZHANG Xiaowen, SONG Longfei( ), LIAO Bokai, WAN Shan, KANG Lei, GUO Xingpeng( ) |
School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China |
|
Cite this article:
HU Wenbin, ZHANG Xiaowen, SONG Longfei, LIAO Bokai, WAN Shan, KANG Lei, GUO Xingpeng. Corrosion Behavior of AlCoCrFeNi2.1 Eutectic High-Entropy Alloy in Sulfuric Acid Solution. Acta Metall Sin, 2023, 59(12): 1644-1654.
|
Abstract Several high-entropy alloys (HEAs), such as single-phase bcc HEA with high strength and fcc with high ductility have been developed over the past few decades. Eutectic HEA (EHEA), such as AlCoCrFeNi2.1, consists of both fcc and bcc microstructure, imparting excellent mechanical properties. The recent research on AlCoCrFeNi2.1 EHEA primarily focuses on its mechanical properties. However, corrosion resistance of AlCoCrFeNi2.1 EHEA is rarely discussed, which is crucial for the application of new materials. This work investigates the corrosion behavior of AlCoCrFeNi2.1 EHEA in 0.05 mol/L H2SO4 and 0.05 mol/L H2SO4 + 0.02 mol/L NaCl solutions using electrochemical evaluation, SEM, EDS, and XPS. The results indicate that Cl- do not alter the semiconductor type of passive film on AlCoCrFeNi2.1 EHEA, but they considerably affect the compactness. Cl- change passive film properties by influencing the Al and Cr oxide contents; however, Ni is not affected by Cl-. The Ni-Al-rich phase is preferentially dissolved in 0.05 mol/L H2SO4 solution, and pitting corrosion and selective dissolution occur in 0.05 mol/L H2SO4 + 0.02 mol/L NaCl solution.
|
Received: 12 May 2022
|
|
Fund: Guang Dong Basic and Applied Basic Research Foundation(2021A1515110560) |
1 |
Wang H W, He Z F, Jia N. Microstructure and mechanical properties of a FeMnCoCr high-entropy alloy with heterogeneous structure[J]. Acta Metall. Sin., 2021, 57: 632
doi: 10.11900/0412.1961.2020.00225
|
|
王洪伟, 何竹风, 贾 楠. 非均匀组织FeMnCoCr高熵合金的微观结构和力学性能[J]. 金属学报, 2021, 57: 632
doi: 10.11900/0412.1961.2020.00225
|
2 |
Lu Y P, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: Eutectic high-entropy alloys[J]. Sci. Rep., 2014, 4: 6200
doi: 10.1038/srep06200
pmid: 25160691
|
3 |
Li X G, Zhang D W, Liu Z Y, et al. Materials science: Share corrosion data[J]. Nature, 2015, 527: 441
doi: 10.1038/527441a
|
4 |
Li Q, Xia X J, Pei Z B, et al. Long-term corrosion monitoring of carbon steels and environmental correlation analysis via the random forest method[J]. npj Mater. Degrad., 2022, 6: 1
doi: 10.1038/s41529-021-00211-3
|
5 |
Wang H, Liu P, Chen X H, et al. Mechanical properties and corrosion resistance characterization of a novel Co36Fe36Cr18Ni10 high-entropy alloy for bioimplants compared to 316L alloy[J]. J. Alloys Compd., 2022, 906: 163947
doi: 10.1016/j.jallcom.2022.163947
|
6 |
Xu Z L, Zhang H, Du X J, et al. Corrosion resistance enhancement of CoCrFeMnNi high-entropy alloy fabricated by additive manufacturing[J]. Corros. Sci., 2020, 177: 108954
doi: 10.1016/j.corsci.2020.108954
|
7 |
Luo H, Zou S W, Chen Y H, et al. Influence of carbon on the corrosion behaviour of interstitial equiatomic CoCrFeMnNi high-entropy alloys in a chlorinated concrete solution[J]. Corros. Sci., 2020, 163: 108287
doi: 10.1016/j.corsci.2019.108287
|
8 |
Shi Y Z, Yang B, Xie X, et al. Corrosion of Alx CoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior[J]. Corros. Sci., 2017, 119: 33
doi: 10.1016/j.corsci.2017.02.019
|
9 |
Chai W K, Lu T, Pan Y. Corrosion behaviors of FeCoNiCrx (x = 0, 0.5, 1.0) multi-principal element alloys: Role of Cr-induced segregation[J]. Intermetallics, 2020, 116: 106654
doi: 10.1016/j.intermet.2019.106654
|
10 |
Lin C M, Tsai H L. Evolution of microstructure, hardness, and corrosion properties of high-entropy Al0.5CoCrFeNi alloy[J]. Intermetallics, 2011, 19: 288
doi: 10.1016/j.intermet.2010.10.008
|
11 |
Lu Y P, Jiang H, Guo S, et al. A new strategy to design eutectic high-entropy alloys using mixing enthalpy[J]. Intermetallics, 2017, 91: 124
doi: 10.1016/j.intermet.2017.09.001
|
12 |
Jiang H, Han K M, Gao X X, et al. A new strategy to design eutectic high-entropy alloys using simple mixture method[J]. Mater. Des., 2018, 142: 101
doi: 10.1016/j.matdes.2018.01.025
|
13 |
He F, Wang Z J, Ai C, et al. Grouping strategy in eutectic multi-principal-component alloy[J]. Mater. Chem. Phys., 2019, 221: 138
doi: 10.1016/j.matchemphys.2018.09.044
|
14 |
Peng P, Li S Y, Chen W Q, et al. Phase selection and mechanical properties of directionally solidified AlCoCrFeNi2.1 eutectic high-entropy alloy[J]. J. Alloys Compd., 2022, 898: 162907
doi: 10.1016/j.jallcom.2021.162907
|
15 |
Huang L F, Sun Y N, Chen N, et al. Simultaneously enhanced strength-ductility of AlCoCrFeNi2.1 eutectic high-entropy alloy via additive manufacturing[J]. Mater. Sci. Eng., 2022, A830: 142327
|
16 |
Sun Y P, Wang Z, Yang H J, et al. Effects of the element La on the corrosion properties of CrMnFeNi high entropy alloys[J]. J. Alloys Compd., 2020, 842: 155825
doi: 10.1016/j.jallcom.2020.155825
|
17 |
Trueba M, Trasatti S P. Study of Al alloy corrosion in neutral NaCl by the pitting scan technique[J]. Mater. Chem. Phys., 2010, 121: 523
doi: 10.1016/j.matchemphys.2010.02.022
|
18 |
Shuang S, Ding Z Y, Chung D, et al. Corrosion resistant nanostructured eutectic high entropy alloy[J]. Corros. Sci., 2020, 164: 108315
doi: 10.1016/j.corsci.2019.108315
|
19 |
Chou Y L, Yeh J W, Shih H C. The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co1.5CrFeNi1.5Ti0.5Mox in aqueous environments[J]. Corros. Sci., 2010, 52: 2571
doi: 10.1016/j.corsci.2010.04.004
|
20 |
Fu Y, Dai C D, Luo H, et al. The corrosion behavior and film properties of Al-containing high-entropy alloys in acidic solutions[J]. Appl. Surf. Sci., 2021, 560: 149854
doi: 10.1016/j.apsusc.2021.149854
|
21 |
Umoren S A, Li Y, Wang F H, et al. Electrochemical study of corrosion inhibition and adsorption behaviour for pure iron by polyacrylamide in H2SO4: Synergistic effect of iodide ions[J]. Corros. Sci., 2010, 52: 1777
doi: 10.1016/j.corsci.2010.01.026
|
22 |
Lee C P, Chang C C, Chen Y Y, et al. Effect of the aluminium content of Alx CrFe1.5MnNi0.5 high-entropy alloys on the corrosion behaviour in aqueous environments[J]. Corros. Sci., 2008, 50: 2053
doi: 10.1016/j.corsci.2008.04.011
|
23 |
Kao Y F, Lee T D, Chen S K, et al. Electrochemical passive properties of Alx CoCrFeNi (x = 0, 0.25, 0.50, 1.00) alloys in sulfuric acids[J]. Corros. Sci., 2010, 52: 1026
doi: 10.1016/j.corsci.2009.11.028
|
24 |
Luo H, Li Z M, Mingers A M, et al. Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution[J]. Corros. Sci., 2018, 134: 131
doi: 10.1016/j.corsci.2018.02.031
|
25 |
BenSalah M, Sabot R, Triki E, et al. Passivity of Sanicro28 (UNS N-08028) stainless steel in polluted phosphoric acid at different temperatures studied by electrochemical impedance spectroscopy and Mott-Schottky analysis[J]. Corros. Sci., 2014, 86: 61
doi: 10.1016/j.corsci.2014.04.056
|
26 |
Mert B D, Yüce A O, Kardaş G, et al. Inhibition effect of 2-amino-4-methylpyridine on mild steel corrosion: Experimental and theoretical investigation[J]. Corros. Sci., 2014, 85: 287
doi: 10.1016/j.corsci.2014.04.032
|
27 |
Wang Z, Zhang G H, Fan X H, et al. Corrosion behavior and surface characterization of an equiatomic CoCrFeMoNi high-entropy alloy under various pH conditions[J]. J. Alloys Compd., 2022, 900: 163432
doi: 10.1016/j.jallcom.2021.163432
|
28 |
Dai C D, Luo H, Li J, et al. X-ray photoelectron spectroscopy and electrochemical investigation of the passive behavior of high-entropy FeCoCrNiMox alloys in sulfuric acid[J]. Appl. Surf. Sci., 2020, 499: 143903
doi: 10.1016/j.apsusc.2019.143903
|
29 |
Escrivà-Cerdán C, Blasco-Tamarit E, García-García D M, et al. Effect of temperature on passive film formation of UNS N08031 Cr-Ni alloy in phosphoric acid contaminated with different aggressive anions[J]. Electrochim. Acta, 2013, 111: 552
doi: 10.1016/j.electacta.2013.08.040
|
30 |
Jiang R J, Chen C F, Zheng S Q. The non-linear fitting method to analyze the measured M-S plots of bipolar passive films[J]. Electrochim. Acta, 2010, 55: 2498
doi: 10.1016/j.electacta.2009.11.093
|
31 |
Wei L, Liu Y, Li Q, et al. Effect of roughness on general corrosion and pitting of (FeCoCrNi)0.89(WC)0.11 high-entropy alloy composite in 3.5wt.%NaCl solution[J]. Corros. Sci., 2019, 146: 44
doi: 10.1016/j.corsci.2018.10.025
|
32 |
Kong D C, Xu A N, Dong C F, et al. Electrochemical investigation and ab initio computation of passive film properties on copper in anaerobic sulphide solutions[J]. Corros. Sci., 2017, 116: 34
doi: 10.1016/j.corsci.2016.12.010
|
33 |
Wang L T, Mercier D, Zanna S, et al. Study of the surface oxides and corrosion behaviour of an equiatomic CoCrFeMnNi high entropy alloy by XPS and ToF-SIMS[J]. Corros. Sci., 2020, 167: 108507
doi: 10.1016/j.corsci.2020.108507
|
34 |
Zhu M, Zhao B Z, Yuan Y F, et al. Effect of annealing temperature on microstructure and corrosion behavior of CoCrFeMnNi high-entropy alloy in alkaline soil simulation solution[J]. Mater. Chem. Phys., 2022, 279: 125725
doi: 10.1016/j.matchemphys.2022.125725
|
35 |
Izadi M, Soltanieh M, Alamolhoda S, et al. Microstructural characterization and corrosion behavior of Alx CoCrFeNi high entropy alloys[J]. Mater. Chem. Phys., 2021, 273: 124937
doi: 10.1016/j.matchemphys.2021.124937
|
36 |
Hasannaeimi V, Mukherjee S. Galvanic corrosion in a eutectic high entropy alloy[J]. J. Electroanal. Chem., 2019, 848: 113331
doi: 10.1016/j.jelechem.2019.113331
|
37 |
Wang P J, Ma L W, Cheng Q X, et al. Influence of grain refinement on the corrosion behavior of metallic materials: A review[J]. Int. J. Miner., Metall. Mater., 2021, 28: 1112
|
38 |
Szklarska-Smialowska Z. Pitting corrosion of aluminum[J]. Corros. Sci., 1999, 41: 1743
doi: 10.1016/S0010-938X(99)00012-8
|
39 |
Moreno M, Morris W, Alvarez M G, et al. Corrosion of reinforcing steel in simulated concrete pore solutions: Effect of carbonation and chloride content[J]. Corros. Sci., 2004, 46: 2681
doi: 10.1016/j.corsci.2004.03.013
|
40 |
Hsu K M, Chen S H, Lin C S. Microstructure and corrosion behavior of FeCrNiCoMnx (x = 1.0, 0.6, 0.3, 0) high entropy alloys in 0.5 M H2SO4 [J]. Corros. Sci., 2021, 190: 109694
doi: 10.1016/j.corsci.2021.109694
|
41 |
Qi W, Wang W R, Yang X, et al. Effect of Zr on phase separation, mechanical and corrosion behavior of heterogeneous CoCrFeNiZrx high-etropy alloy[J]. J. Mater. Sci. Technol., 2022, 109: 76
doi: 10.1016/j.jmst.2021.08.062
|
42 |
Wang W R, Qi W, Xie L, et al. Microstructure and corrosion behavior of (CoCrFeNi)95Nb5 high-entropy alloy coating fabricated by plasma spraying[J]. Materials, 2019, 12: 694
doi: 10.3390/ma12050694
|
43 |
Liu J, Zhang T, Meng G Z, et al. Effect of pitting nucleation on critical pitting temperature of 316L stainless steel by nitric acid passivation[J]. Corros. Sci., 2015, 91: 232
doi: 10.1016/j.corsci.2014.11.018
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|