Please wait a minute...
Acta Metall Sin  2025, Vol. 61 Issue (1): 177-190    DOI: 10.11900/0412.1961.2024.00236
Research paper Current Issue | Archive | Adv Search |
Effect of Pre-Aging on Microstructure and Properties of Cold-Rolled Alumina-Forming Austenitic Steel
ZHANG Shengyu1,2,3, MA Qingshuang1,2, YU Liming4, ZHANG Jingwen4, LI Huijun5, GAO Qiuzhi1,2()
1 School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2 School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
3 CNPC Bohai Equipment Manufacturing Co. Ltd., Tianjin 300457, China
4 School of Materials Science and Engineering, Tianjin University, Tianjin 300354, China
5 Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
Cite this article: 

ZHANG Shengyu, MA Qingshuang, YU Liming, ZHANG Jingwen, LI Huijun, GAO Qiuzhi. Effect of Pre-Aging on Microstructure and Properties of Cold-Rolled Alumina-Forming Austenitic Steel. Acta Metall Sin, 2025, 61(1): 177-190.

Download:  HTML  PDF(8676KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Alumina-forming austenitic (AFA) steel is expected to be applied to high-temperature components of ultra-supercritical thermal power plants. However, the high-temperature strength and stability of AFA steel need to be improved further. Here, the influence of pre-aging on the precipitation behavior, microstructural evolution, and mechanical properties of cold-rolled AFA steel was investigated. The results showed that pre-aging significantly influences the synergistic strengthening due to dislocations and precipitation in cold-rolled AFA steel during the process of high-temperature aging treatment. The precipitates in a sample that received pre-aging treatment exhibited strong pinning effect on grain boundaries and dislocations, which enhances the effect of precipitation strengthening by boosting the number of nucleation sites and the driving force for the formation of the precipitates. Compared to cold rolling with a 10% thickness reduction but without pre-aging, the formation of the Laves phase and the B2-NiAl phase after pre-aging for 24 h resulted in increased pinning on the dislocations and grain boundaries, which prevented dislocation slip, generated stress concentrations, boosted the number of nucleation sites and the driving force for the formation of the precipitates, and accelerated the phase-transition process; the volume fraction of the precipitates also increased significantly. Hardness and tensile tests at room temperature showed that the strength and hardness resulting from both cold rolling and cold rolling after pre-aging first increased and subsequently decreased.

Key words:  pre-aging      cold rolling      alumina-forming austenitic steel      microstructural evolution      mechanical property     
Received:  15 July 2024     
ZTFLH:  TG156  
Fund: National Natural Science Foundation of China(52171107);National Natural Science Foundation of China(52201203);Industry-University-Research Cooperation Project of Hebei Based Universities and Shijiazhuang City(241791237A)
Corresponding Authors:  GAO Qiuzhi, professor, Tel: (0335)8048630, E-mail: gaoqiuzhi@neuq.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2024.00236     OR     https://www.ams.org.cn/EN/Y2025/V61/I1/177

Fig.1  Schematic of tensile test sample (unit: mm)
Fig.2  SEM images of the CR10 sample aged at 700 oC for 0 h (a), 4 h (b), 24 h (c), 100 h (d), 500 h (e), and 1000 h (f) (Insets show the corresponding microstructural details)
Fig.3  SEM images of the PA24-CR10 sample aged at 700 oC for 4 h (a), 24 h (b), 50 h (c), 100 h (d), 500 h (e), and 1000 h (f) (Insets show the corresponding microstructural details)
Fig.4  TEM image of the CR10-A0 sample (a), and EDS results and correponding selected area electron diffraction (SAED) patterns (insets) of δ-ferrite (b) and Laves (c) phases
Fig.5  SEM image and corresponding EDS mapping results of the δ-ferritic region in the PA24-CR10-A24 sample
Fig.6  SEM image and corresponding EDS mapping results of the δ-ferritic region in the PA24-CR10-A500 sample
Fig.7  XRD spectra of CR10 (a, b) and PA24-CR10 (c, d) samples aged at 700 oC for different time (Figs.7b and d are zoom-in views of Figs.7a and c, respectively)
Fig.8  Variations in Vickers hardness of CR10 and PA24-CR10 samples aged at 700 oC for different time
Fig.9  Stress-strain curves of CR10 (a) and PA24-CR10 (b) samples aged at 700 oC for different time
Fig.10  Variations in strength (a) and strain (b) of CR10 and PA24-CR10 samples aged at 700 oC for different time
Fig.11  Tensile fracture morphologies of the CR10 sample aged at 700 oC for 0 h (a), 4 h (b), 24 h (c), 100 h (d), 500 h (e), and 1000 h (f)
Fig.12  Tensile fracture morphologies of the PA24-CR10 sample aged at 700 oC for 0 h (a), 4 h (b), 24 h (c), 100 h (d), 500 h (e), and 1000 h (f)
Fig.13  Statistics on the size of B2-NiAl precipitates (a, b) and Laves precipitates (c, d) in CR10-A100 (a, c) and PA24-CR10-A100 (b, d) samples
Fig.14  Statistics on the volume fractions of precipitates in CR10-A100 and PA24-CR10-A100 samples
Fig.15  TEM images (Insets show the corresponding grain boundary and in-grain details) (a, b), and EDS results and SAED patterns (insets) (b1, b2) of CR10-A0 (a) and PA24-CR10-A0 (b, b1, b2) samples
Fig.16  Schematic of microstructural evolution of 4Al-2Cu-AFA steel
1 He H S, Yu L M, Liu C X, et al. Research progress of a novel martensitic heat-resistant steel G115[J]. Acta Metall. Sin., 2022, 58: 311
doi: 10.11900/0412.1961.2021.00185
何焕生, 余黎明, 刘晨曦 等. 新一代马氏体耐热钢G115的研究进展[J]. 金属学报, 2022, 58: 311
doi: 10.11900/0412.1961.2021.00185
2 Gao Q Z, Qu F, Zhang H L, et al. Austenite grain growth in alumina-forming austenitic steel[J]. J. Mater. Res., 2016, 31: 1732
3 Gao Q Z, Zhang H L, Li H J, et al. Hot deformation of alumina-forming austenitic steel: EBSD study and flow behavior[J]. J. Mater. Sci., 2019, 54: 8760
4 Liu Z Y, Gao Q Z, Zhang H L, et al. EBSD analysis and mechanical properties of alumina-forming austenitic steel during hot deformation and annealing[J]. Mater. Sci. Eng., 2019, A755: 106
5 Gao Q Z, Yuan Z, Ma Q S, et al. Strengthening and toughening optimizations of novel G115 martensitic steel: Utilizing secondary normalizing process[J]. Mater. Sci. Eng., 2022, A852: 143621
6 Jiang J D, Liu Z Y, Gao Q Z, et al. The effect of isothermal aging on creep behavior of modified 2.5Al alumina-forming austenitic steel[J]. Mater. Sci. Eng., 2020, A797: 140219
7 Gwalani B, Escobar J, Song M, et al. Mechanisms for high creep resistance in alumina forming austenitic (AFA) alloys[J]. Acta Mater., 2024, 263: 119494
8 Meng H J, Wang J, Wang L, et al. The precipitation control in aged alumina-forming austenitic stainless steels Fe-15Cr-25Ni-3Al-NbWCu by W addition and its effect on the mechanical properties[J]. Mater. Charact., 2020, 163: 110233
9 Yamamoto Y, Brady M P, Lu Z P, et al. Alumina-forming austenitic stainless steels strengthened by laves phase and MC carbide precipitates[J]. Metall. Mater. Trans., 2007, 38A: 2737
10 Yamamoto Y, Santella M L, Brady M P, et al. Effect of alloying additions on phase equilibria and creep resistance of alumina-forming austenitic stainless steels[J]. Metall. Mater. Trans., 2009, 40A: 1868
11 Yamamoto Y, Takeyama M, Lu Z P, et al. Alloying effects on creep and oxidation resistance of austenitic stainless steel alloys employing intermetallic precipitates[J]. Intermetallics, 2008, 16: 453
12 Liu T, Luo R, Cheng X N, et al. Investigations on the accelerated creep testing of alumina-forming austenitic stainless steel[J]. Acta Metall. Sin., 2020, 56: 1452
doi: 10.11900/0412.1961.2020.00088
刘 天, 罗 锐, 程晓农 等. 形成Al2O3表层的奥氏体不锈钢加速蠕变实验研究[J]. 金属学报, 2020, 56: 1452
13 Yuan Z, Ma Q S, Lu B Y, et al. Influence of precipitates evolutions in δ-ferrite and austenite matrix on mechanical properties of alumina-forming austenitic steel[J]. Mater. Sci. Eng., 2022, A847: 143321
14 Hu B, Baker I. High temperature deformation of Laves phase precipitates in alumina-forming austenitic stainless steels[J]. Mater. Lett., 2017, 195: 108
15 Sun B H, Palanisamy D, Ponge D, et al. Revealing fracture mechanisms of medium manganese steels with and without delta-ferrite[J]. Acta Mater., 2019, 164: 683
16 Liu Z Y, Ma Q S, Jiang C C, et al. High-temperature creep property deterioration of the alumina-forming austenitic steel: Effect of σ phase[J]. Mater. Sci. Eng., 2022, A846: 143126
17 Gao Q Z, Jiang Y J, Liu Z Y, et al. Effects of alloying elements on microstructure and mechanical properties of Co-Ni-Al-Ti superalloy[J]. Mater. Sci. Eng., 2020, A779: 139139
18 Gao Q Z, Lu B Y, Ma Q S, et al. Effect of Cu addition on microstructure and properties of Fe-20Ni-14Cr alumina-forming austenitic steel[J]. Intermetallics, 2021, 138: 107312
19 Lu B Y, Gao Q Z, Zhang H L, et al. Strengthening and fracture mechanisms of Fe-20Ni-14Cr-2Cu alumina-forming austenitic steel during creeping[J]. J. Mater. Sci., 2022, 57: 20472
20 Ren P, Chen X P, Wang C Y, et al. Effects of pre-strain and two-step aging on microstructure and mechanical properties of Fe-30Mn-11Al-1.2C austenitic low-density steel[J]. Acta Metall. Sin., 2022, 58: 771
doi: 10.11900/0412.1961.2020.00509
任 平, 陈兴品, 王存宇 等. 预变形和双级时效对Fe-30Mn-11A1-1.2C奥氏体低密度钢显微组织和力学性能的影响[J]. 金属学报, 2022, 58: 771
21 Wang J Q, Liu W F, Liu S, et al. Effect of aging treatment at 700 oC on microstructure and mechanical properties of 9Cr ODS steel[J]. Acta Metall. Sin., 2024, 60: 616
汪建强, 刘威峰, 刘 生 等. 700 ℃时效对9Cr ODS钢微观组织和力学性能的影响[J]. 金属学报, 2024, 60: 616
doi: 10.11900/0412.1961.2022.00558
22 Guo Q Y, Li Y M, Chen B, et al. Effect of high-temperature ageing on microstructure and creep properties of S31042 heat-resistant steel[J]. Acta Metall. Sin., 2021, 57: 82
doi: 10.11900/0412.1961.2020.00109
郭倩颖, 李彦默, 陈 斌 等. 高温时效处理对S31042耐热钢组织和蠕变性能的影响[J]. 金属学报, 2021, 57: 82
doi: 10.11900/0412.1961.2020.00109
23 Zhao B B, Chang K C, Fan J F, et al. Annealing effects on precipitation and high-temperature properties of a Cu-containing alumina-forming austenitic steel[J]. Mater. Lett., 2016, 176: 83
24 Jiang C C, Gao Q Z, Zhang H L, et al. Microstructure and mechanical properties of 4Al alumina-forming austenitic steel after cold-rolling deformation and annealing[J]. Materials, 2020, 13: 2767
25 Jiang Y J, Gao Q Z, Zhang H L, et al. The effect of isothermal aging on microstructure and mechanical behavior of modified 2.5Al alumina-forming austenitic steel[J]. Mater. Sci. Eng., 2019, A748: 161
26 Zhang J W, Yu L M, Gao Q Z, et al. Creep behavior, microstructure evolution and fracture mechanism of a novel martensite heat resistance steel G115 affected by prior cold deformation[J]. Mater. Sci. Eng., 2022, A850: 143564
27 Wang C S, Fu H D, Zhang H T, et al. Effect of cold-rolling deformation on microstructure, properties, and precipitation behavior of high-performance Cu-Ni-Si alloys[J]. Acta Metall. Sin., 2023, 59: 585
王长胜, 付华栋, 张洪涛 等. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59: 585
doi: 10.11900/0412.1961.2021.00208
28 Li L J, Li R G, Zhang J J, et al. Effects of cryorolling on properties and precipitation behavior of a high-strength and high-conductivity Cu-1Cr-0.2Zr-0.25Nb alloy[J]. Acta Metall. Sin, 2024, 60: 405
李龙健, 李仁庚, 张家郡 等. 低温轧制对高强高导Cu-1Cr-0.2Zr-0.25Nb合金性能及析出行为的影响[J]. 金属学报, 2024, 60: 405
doi: 10.11900/0412.1961.2022.00180
29 Wei D X, Gong W, Wang L Q, et al. Strengthening of high-entropy alloys via modulation of cryo-pre-straining-induced defects[J]. J. Mater. Sci. Technol., 2022, 129: 251
doi: 10.1016/j.jmst.2022.04.055
30 Hu B J, Zheng Q Y, Lu Y, et al. Recrystallization controlling in a cold-rolled medium Mn steel and its effect on mechanical properties[J]. Acta Metall. Sin., 2024, 60: 189
doi: 10.11900/0412.1961.2022.00350
胡宝佳, 郑沁园, 路 轶 等. 冷轧中锰钢的再结晶调控及其对力学性能的影响[J]. 金属学报, 2024, 60: 189
doi: 10.11900/0412.1961.2022.00350
31 Zhang S Y, Gao Q Z, Zhang W, et al. Effect of strengthening mechanisms on mechanical properties of alumina-forming austenitic steel after pre-strain[J]. Prog. Nat. Sci. Mater. Int., 2023, 33: 901
32 Funakawa Y, Ujiro T. Tensile properties of chromium-bearing extra low carbon steel sheets[J]. ISIJ Int., 2010, 50: 1488
33 Sivaprasad S, Tarafder S, Ranganath V R, et al. Effect of prestrain on fracture toughness of HSLA steels[J]. Mater. Sci. Eng., 2000, A284: 195
34 Peng W, Wang J J, Zhang H W, et al. Insights into the role of grain refinement on high-temperature initial oxidation phase transformation and oxides evolution in high aluminium Fe-Mn-Al-C duplex lightweight steel[J]. Corros. Sci., 2017, 126: 197
35 Gao Q Z, Liu Z Y, Li H J, et al. High-temperature oxidation behavior of modified 4Al alumina-forming austenitic steel: Effect of cold rolling[J]. J. Mater. Sci. Technol., 2021, 68: 91
doi: 10.1016/j.jmst.2020.08.013
36 Hu B, Trotter G, Baker I, et al. The effects of cold work on the microstructure and mechanical properties of intermetallic strengthened alumina-forming austenitic stainless steels[J]. Metall. Mater. Trans., 2015, 46A: 3773
37 Trotter G, Rayner G, Baker I, et al. Accelerated precipitation in the AFA stainless steel Fe-20Cr-30Ni-2Nb-5Al via cold working[J]. Intermetallics, 2014, 53: 120
38 Gao Q Z, Jiang C C, Zhang H L, et al. Co-strengthening of dislocations and precipitates in alumina-forming austenitic steel with cold rolling followed by aging[J]. Mater. Sci. Eng., 2022, A831: 142181
39 Zhao B B, Fan J F, Chen Z, et al. Evolution of precipitates in a Cu-containing alumina-forming austenitic steel after short-term mechanical tests[J]. Mater. Charact., 2017, 125: 37
[1] ZHAO Yanan, GUO Qianying, LIU Chenxi, MA Zongqing, LIU Yongchang. Effects of Subsequent Heat Treatment on Microstructure and High-Temperature Mechanical Properties of Laser 3D Printed GH4099 Alloy[J]. 金属学报, 2025, 61(1): 165-176.
[2] WAN Jie, LI Haotian, LIU Shuji, LU Hongzhou, WANG Lisheng, ZHANG Zhendong, LIU Chunhai, JIA Jianlei, LIU Haifeng, CHEN Yuzeng. Homogenization of Nuclei in Al-Nb-B Inoculant and Its Effect on Microstructure and Mechanical Properties of Cast Al Alloy[J]. 金属学报, 2025, 61(1): 117-128.
[3] ZHU Man, ZHANG Cheng, XU Junfeng, JIAN Zengyun, XI Zengzhe. Microstructure, Mechanical Properties, and High-Temperature Oxidation Behaviors of the CrNbTiVAl x Refractory High-Entropy Alloys[J]. 金属学报, 2025, 61(1): 88-98.
[4] ZHANG Qiankun, HU Xiaofeng, JIANG Haichang, RONG Lijian. Effect of Si on Microstructure and Mechanical Properties of a 9Cr Ferritic/Martensitic Steel[J]. 金属学报, 2024, 60(9): 1200-1212.
[5] ZHOU Mu, WANG Qian, WANG Yanxu, ZHAI Zirong, HE Lunhua, LI Bing, MA Yingjie, LEI Jiafeng, YANG Rui. Effect of Prewelding Pretreatment on Welding Residual Stress of Titanium Alloy Thick Plate[J]. 金属学报, 2024, 60(8): 1064-1078.
[6] CHEN Cheng, YANG Guangyu, JIN Menghui, WANG Qiang, TANG Xin, CHENG Huimin, JIE Wanqi. Effect of the Mold Positive and Negative Rotation on the Microstructure and Room-Temperature Mechanical Properties of K4169 Superalloy[J]. 金属学报, 2024, 60(7): 926-936.
[7] MENG Yujia, XI Tong, YANG Chunguang, ZHAO Jinlong, ZHANG Xinrui, YU Yingjie, YANG Ke. Effect of Gallium Addition on Mechanical and Antibacterial Properties of 304L Stainless Steel[J]. 金属学报, 2024, 60(7): 890-900.
[8] XU Renjie, TU Xin, HU Bin, LUO Haiwen. Microstructure and Mechanical Properties of Cu-V Dual Alloyed 3Mn Steel[J]. 金属学报, 2024, 60(6): 817-825.
[9] XIE Liwen, ZHANG Lilong, LIU Yanyan, ZHANG Mingyang, WANG Shaogang, JIAO Da, LIU Zengqian, ZHANG Zhefeng. Fabrication and Mechanical Properties of Bioinspired Mg-Based Composites Reinforced by Stainless Steel Fibers[J]. 金属学报, 2024, 60(6): 760-769.
[10] WANG Zheng, WANG Zhenyu, WANG Aiying, YANG Wei, KE Peiling. Influence of Micro-Arc Oxidation Time on Structure and Properties of MAO/Cr Composite Coatings[J]. 金属学报, 2024, 60(5): 691-698.
[11] WANG Jianqiang, LIU Weifeng, LIU Sheng, XU Bin, SUN Mingyue, LI Dianzhong. Effect of Aging Treatment at 700oC on Microstructure and Mechanical Properties of 9Cr ODS Steel[J]. 金属学报, 2024, 60(5): 616-626.
[12] ZENG Li, WANG Guilan, ZHANG Haiou, ZHAI Wenzheng, ZHANG Yong, ZHANG Mingbo. Microstructure and Mechanical Properties of GH4169D Superalloy Fabricated by Hybrid Arc and Micro-Rolling Additive Manufacturing[J]. 金属学报, 2024, 60(5): 681-690.
[13] JIANG Haowen, PENG Wei, FAN Zengwei, WANG Yangxin, LIU Tengshi, DONG Han. Effect of Ag on Microstructure and Mechanical Properties of Austenitic Stainless Steel[J]. 金属学报, 2024, 60(4): 434-442.
[14] ZHANG Guangying, LI Yan, HUANG Liying, DING Wei. Process Design and Microstructure Control of Medium Manganese Steel with Continuous Yield and High Strength Yield Ratio[J]. 金属学报, 2024, 60(4): 443-452.
[15] TIAN Teng, ZHA Min, YIN Haoliang, HUA Zhenming, JIA Hailong, WANG Huiyuan. Enhanced Mechanical Properties and Thermal Stability Mechanism of a High Solid Solution Al-Mg Alloy Processed by Cryogenic High-Reduction Hard-Plate Rolling[J]. 金属学报, 2024, 60(4): 473-484.
No Suggested Reading articles found!