Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (9): 1108-1117    DOI: 10.11900/0412.1961.2021.00085
Research paper Current Issue | Archive | Adv Search |
Enhancement of Microstructure and Mechanical Property of AlSi10Mg-Er-Zr Alloys Fabricated by Selective Laser Melting
YANG Tianye, CUI Li(), HE Dingyong, HUANG Hui
Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
Cite this article: 

YANG Tianye, CUI Li, HE Dingyong, HUANG Hui. Enhancement of Microstructure and Mechanical Property of AlSi10Mg-Er-Zr Alloys Fabricated by Selective Laser Melting. Acta Metall Sin, 2022, 58(9): 1108-1117.

Download:  HTML  PDF(4061KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The AlSi10Mg alloy fabricated using selective laser melting (SLM) has attracted attention because of its excellent quality and properties. However, the mechanical properties of SLM AlSi10Mg alloy cannot meet the requirements of the high strength of aluminum alloys in the aerospace industry. To improve the mechanical properties of SLM AlSi10Mg alloy, AlSi10Mg-Er-Zr powders were prepared using in situ alloying mechanism and gas atomization. The relative density, microstructure, and mechanical properties of SLM AlSi10Mg-Er-Zr alloys have been investigated. The results show that the relative density of AlSi10Mg-Er-Zr alloys fabricated using SLM reaches 99.20%. The SLM AlSi10Mg-Er-Zr alloy has a microhardness value of 156.5 HV. The ultimate tensile strength (UTS) and yield strength (YS) of the SLM AlSi10Mg-Er-Zr alloy can reach 461 and 304 MPa, respectively. Compared with the conventional AlSi10Mg alloy, the microhardness has been increased by 25.8%; the UTS and YS are increased by 22.6% and 26.7%, respectively. The fine-grain and solid solution strengthening associated with SLM processing with the addition of Er and Zr elements, as a result of increased grain size refinement and solid solubility of Si element in the α-Al matrix, are responsible for the improvement in the mechanical properties.

Key words:  selective laser melting      AlSi10Mg-Er-Zr alloy      rare earth element      microstructure      mechanical property     
Received:  26 February 2021     
ZTFLH:  TG146.2  
Fund: National Natural Science Foundation of China(51621003)
About author:  CUI Li, professor, Tel: 13311267636, E-mail: cuili@bjut.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00085     OR     https://www.ams.org.cn/EN/Y2022/V58/I9/1108

AlloyCuFeMgMnNiSiZnErZrAl
AlSi10Mg-Er-Zr≤ 0.050.110.300.37≤ 0.059.11≤ 0.100.640.41Bal.
AlSi10Mg≤ 0.050.150.350.45≤ 0.059.76≤ 0.10--Bal.
Table 1  Chemical compositions of AlSi10Mg-Er-Zr and AlSi10Mg alloy powders
Fig.1  Relationship between the relative density and the laser energy density of AlSi10Mg-Er-Zr sample
Fig.2  Macrostructures of AlSi10Mg-Er-Zr sample fabricated by selective laser melting (SLM)
(a) three dimension macrostructure (b) X-Y plane (c) X-Z plane (d) Y-Z plane
Fig.3  SEM images of AlSi10Mg-Er-Zr (a) and AlSi10Mg (b) samples fabricated by SLM
Fig.4  XRD spectra of AlSi10Mg-Er-Zr and AlSi10Mg samples fabricated by SLM
SampleUTSYSHardness
MPaMPaHV
AlSi10Mg-Er-Zr461 ± 4304 ± 3156 ± 7
AlSi10Mg376 ± 4240 ± 3124 ± 5
Table 2  Mechanical properties of AlSi10Mg-Er-Zr and AlSi10Mg samples fabricated by SLM
Fig.5  Inverse pole figure maps of AlSi10Mg-Er-Zr (a) and AlSi10Mg (b) samples fabricated by SLM and grains size distribution of SLM sample (c)
Fig.6  TEM image and HRTEM images of AlSi10Mg-Er-Zr sample fabricated by SLM
(a) TEM image of AlSi10Mg-Er-Zr sample
(b) HRTEM image and fast fourier transform (inset) of Al3(Er, Zr) phase
(c) HRTEM image and fast fourier transform (inset) of Mg2Si phase
Fig.7  High magnification SEM images and EDS results (mass fraction) of AlSi10Mg-Er-Zr (a) and AlSi10Mg (b) samples fabricated by SLM
Fig.8  Alloying element distributions of AlSi10Mg-Er-Zr sample fabricated by SLM
(a) high angle annular dark field (HAADF) image of area scanning region (b) element distribution map
(c) Al element (d) Si element (e) Mg element (f) Er element (g) Zr element
Fig.9  Schmid factor distribution maps of AlSi10Mg-Er-Zr (a) and AlSi10Mg (b) samples fabricated by SLM
Fig.10  Texture component distribution mapping of AlSi10Mg-Er-Zr (a) and AlSi10Mg (b) samples
SampleCubeGossRPShearBrassCopperS
AlSi10Mg-Er-Zr2.811.237.135.633.533.413.631.08
AlSi10Mg11.703.017.621.406.106.412.331.83
Table 3  Texture contents of AlSi10Mg-Er-Zr and AlSi10Mg samples fabricated by SLM
1 Zhang X J, Tang S Y, Zhao H Y, et al. Research status and key technologies of 3D printing [J]. J. Mater. Eng., 2016, 44(2): 122
张学军, 唐思熠, 肇恒跃 等. 3D打印技术研究现状和关键技术 [J]. 材料工程, 2016, 44(2): 122
2 Gong S L, Suo H B, Li H X. Development and application of metal additive manufacturing technology [J]. Aeronaut. Manuf. Technol., 2013, (13): 66
巩水利, 锁红波, 李怀学. 金属增材制造技术在航空领域的发展与应用 [J]. 航空制造技术, 2013, (13): 66
3 Zhang S. Research on the forming processes and propertiesin selective laser melting of medical alloy powders [D]. Wuhan: Huazhong University of Science and Technology, 2014
张 升. 医用合金粉末激光选区熔化成形工艺与性能研究 [D]. 武汉: 华中科技大学, 2014
4 Chen J T, Guo Z Y, Wang C Y, et al. Research status of Ti-6Al-4V manufactured by selective laser melting for medical device applications [J]. Laser Technol., 2020, 44: 288
陈锦堂, 郭紫莹, 王成勇 等. 激光选区熔化Ti-6Al-4V在医疗器械领域的研究现状 [J]. 激光技术, 2020, 44: 288
5 Li X D, Zhao F. 3D printing technology impact on development of industrial design [J]. Key Eng. Mater., 2016, 693: 1901
doi: 10.4028/www.scientific.net/KEM.693.1901
6 Zhong X H. 3D printing technology applied in the field of racing lightweight [D]. Guangzhou: Guangdong University of Technology, 2019
钟兴华. 3D打印技术在赛车轻量化领域应用研究 [D]. 广州: 广东工业大学, 2019
7 Röttger A, Geenen K, Windmann M, et al. Comparison of microstructure and mechanical properties of 316 L austenitic steel processed by selective laser melting with hot-isostatic pressed and cast material [J]. Mater. Sci. Eng., 2016, A678: 365
8 Zhang W Q, Zhu H H, Hu Z H, et al. Study on the selective laser melting of AlSi10Mg [J]. Acta Metall. Sin., 2017, 53: 918
张文奇, 朱海红, 胡志恒 等. AlSi10Mg的激光选区熔化成形研究 [J]. 金属学报, 2017, 53: 918
doi: 10.11900/0412.1961.2016.00472
9 Aboulkhair N T, Simonelli M, Parry L, et al. 3D printing of aluminium alloys: Additive manufacturing of aluminium alloys using selective laser melting [J]. Prog. Mater. Sci., 2019, 106: 100578
doi: 10.1016/j.pmatsci.2019.100578
10 Kempen K, Thijs L, Van Humbeeck J, et al. Mechanical properties of AlSi10Mg produced by selective laser melting [J]. Phys. Proc., 2012, 39: 439
doi: 10.1016/j.phpro.2012.10.059
11 Brandl E, Heckenberger U, Holzinger V, et al. Additive manufactured AlSi10Mg samples using selective laser melting (SLM): Microstructure, high cycle fatigue, and fracture behavior [J]. Mater. Des., 2012, 34: 159
doi: 10.1016/j.matdes.2011.07.067
12 Read N, Wang W, Essa K, et al. Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development [J]. Mater. Des., 2015, 65: 417
doi: 10.1016/j.matdes.2014.09.044
13 Jiang L Y, Liu T T, Zhang C D, et al. Preparation and mechanical properties of CNTs-AlSi10Mg composite fabricated via selective laser melting [J]. Mater. Sci. Eng., 2018, A734: 171
14 Zhao Z Y, Bai P K, Misra R D K, et al. AlSi10Mg alloy nanocomposites reinforced with aluminum-coated graphene: Selective laser melting, interfacial microstructure and property analysis [J]. J. Alloys Compd., 2019, 792: 203
doi: 10.1016/j.jallcom.2019.04.007
15 Xi L X, Gu D D, Guo S, et al. Grain refinement in laser manufactured Al-based composites with TiB2 ceramic [J]. J. Mater. Res. Technol., 2020, 9: 2611
doi: 10.1016/j.jmrt.2020.04.059
16 Xiao Y K, Bian Z Y, Wu Y, et al. Effect of nano-TiB2 particles on the anisotropy in an AlSi10Mg alloy processed by selective laser melting [J]. J. Alloys Compd., 2019, 798: 644
doi: 10.1016/j.jallcom.2019.05.279
17 Li X P, Ji G, Chen Z, et al. Selective laser melting of nano-TiB2 decorated AlSi10Mg alloy with high fracture strength and ductility [J]. Acta Mater., 2017, 129: 183
doi: 10.1016/j.actamat.2017.02.062
18 Wang H Q, Gu D D. Nanometric TiC reinforced AlSi10Mg nanocomposites: Powder preparation by high-energy ball milling and consolidation by selective laser melting [J]. J. Compos. Mater., 2015, 49: 1639
doi: 10.1177/0021998314538870
19 Gao C, Wang Z, Xiao Z, et al. Selective laser melting of TiN nanoparticle-reinforced AlSi10Mg composite: Microstructural, interfacial, and mechanical properties [J]. J. Mater. Process. Technol., 2020, 281: 116618
doi: 10.1016/j.jmatprotec.2020.116618
20 Gao C, Wu W, Shi J, et al. Simultaneous enhancement of strength, ductility, and hardness of TiN/AlSi10Mg nanocomposites via selective laser melting [J]. Addit. Manuf., 2020, 34: 101378
21 Ye H, Huang J Q, Zhang J Q, et al. Microstructure and mechanical properties of nano-WC reinforced AlSi10Mg fabricated by selective laser melting [J]. J. Mater. Eng., 2020, 48(3): 75
叶 寒, 黄俊强, 张坚强 等. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能 [J]. 材料工程, 2020, 48(3): 75
22 Xue G, Ke L D, Zhu H H, et al. Influence of processing parameters on selective laser melted SiCp/AlSi10Mg composites: Densification, microstructure and mechanical properties [J]. Mater. Sci. Eng., 2019, A764: 138155
23 Zhao X, Gu D D, Ma C L, et al. Microstructure characteristics and its formation mechanism of selective laser melting SiC reinforced Al-based composites [J]. Vacuum, 2019, 160: 189
doi: 10.1016/j.vacuum.2018.11.022
24 Spierings A B, Dawson K, Dumitraschkewitz P, et al. Microstructure characterization of SLM-processed Al-Mg-Sc-Zr alloy in the heat treated and HIPed condition [J]. Addit. Manuf., 2018, 20: 173
25 Nie Z R, Wen S P, Huang H, et al. Research progress of Er-containing aluminum alloy [J]. Chin. J. Nonferrous Met., 2011, 21: 2361
聂祚仁, 文胜平, 黄 晖 等. 铒微合金化铝合金的研究进展 [J]. 中国有色金属学报, 2011, 21: 2361
26 Feng Q N. Research on process, microstructures and properties of AlSi10Mg aluminum alloy prepared by laser melting deposition [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017
冯秋娜. 激光熔化沉积成形AlSi10Mg合金的工艺与组织性能研究 [D]. 南京: 南京航空航天大学, 2017
27 Aboulkhair N T, Maskery I, Tuck C, et al. The microstructure and mechanical properties of selectively laser melted AlSi10Mg: The effect of a conventional T6-like heat treatment [J]. Mater. Sci. Eng., 2016, A667: 139
28 Xing Z B, Nie Z R, Zou J X, et al. Existing form and effect of erbium in Al-Er alloy [J]. J. Chin. Rare Earth Soc., 2007, 25: 234
邢泽炳, 聂祚仁, 邹景霞 等. Al-Er合金铸锭中铒的存在形式及作用研究 [J]. 中国稀土学报, 2007, 25: 234
29 Loucif A, Figueiredo R B, Baudin T, et al. Ultrafine grains and the Hall-Petch relationship in an Al-Mg-Si alloy processed by high-pressure torsion [J]. Mater. Sci. Eng., 2012, A532: 139
30 Wu B L, Song L H, Wan G, et al. Distribution of generalized schmid factor in Euler orientation space and rollability of AZ31B alloy with basal texture [J]. J. Mater. Eng. Perform., 2020, 29: 8145
doi: 10.1007/s11665-020-05279-7
31 Yan H L. Mechanical behavior and texture evolution of low stacking fault energy FCC metals at large deformation [D]. Shenyang: Northeastern University, 2012
闫海乐. 大形变下低层错能面心立方金属力学行为和织构演化的研究 [D]. 沈阳: 东北大学, 2012
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[6] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[10] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[11] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[12] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[13] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[14] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[15] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
No Suggested Reading articles found!