Enhancement of Microstructure and Mechanical Property of AlSi10Mg-Er-Zr Alloys Fabricated by Selective Laser Melting
YANG Tianye, CUI Li(), HE Dingyong, HUANG Hui
Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
Cite this article:
YANG Tianye, CUI Li, HE Dingyong, HUANG Hui. Enhancement of Microstructure and Mechanical Property of AlSi10Mg-Er-Zr Alloys Fabricated by Selective Laser Melting. Acta Metall Sin, 2022, 58(9): 1108-1117.
The AlSi10Mg alloy fabricated using selective laser melting (SLM) has attracted attention because of its excellent quality and properties. However, the mechanical properties of SLM AlSi10Mg alloy cannot meet the requirements of the high strength of aluminum alloys in the aerospace industry. To improve the mechanical properties of SLM AlSi10Mg alloy, AlSi10Mg-Er-Zr powders were prepared using in situ alloying mechanism and gas atomization. The relative density, microstructure, and mechanical properties of SLM AlSi10Mg-Er-Zr alloys have been investigated. The results show that the relative density of AlSi10Mg-Er-Zr alloys fabricated using SLM reaches 99.20%. The SLM AlSi10Mg-Er-Zr alloy has a microhardness value of 156.5 HV. The ultimate tensile strength (UTS) and yield strength (YS) of the SLM AlSi10Mg-Er-Zr alloy can reach 461 and 304 MPa, respectively. Compared with the conventional AlSi10Mg alloy, the microhardness has been increased by 25.8%; the UTS and YS are increased by 22.6% and 26.7%, respectively. The fine-grain and solid solution strengthening associated with SLM processing with the addition of Er and Zr elements, as a result of increased grain size refinement and solid solubility of Si element in the α-Al matrix, are responsible for the improvement in the mechanical properties.
Table 1 Chemical compositions of AlSi10Mg-Er-Zr and AlSi10Mg alloy powders
Fig.1 Relationship between the relative density and the laser energy density of AlSi10Mg-Er-Zr sample
Fig.2 Macrostructures of AlSi10Mg-Er-Zr sample fabricated by selective laser melting (SLM) (a) three dimension macrostructure (b) X-Y plane (c) X-Z plane (d) Y-Z plane
Fig.3 SEM images of AlSi10Mg-Er-Zr (a) and AlSi10Mg (b) samples fabricated by SLM
Fig.4 XRD spectra of AlSi10Mg-Er-Zr and AlSi10Mg samples fabricated by SLM
Sample
UTS
YS
Hardness
MPa
MPa
HV
AlSi10Mg-Er-Zr
461 ± 4
304 ± 3
156 ± 7
AlSi10Mg
376 ± 4
240 ± 3
124 ± 5
Table 2 Mechanical properties of AlSi10Mg-Er-Zr and AlSi10Mg samples fabricated by SLM
Fig.5 Inverse pole figure maps of AlSi10Mg-Er-Zr (a) and AlSi10Mg (b) samples fabricated by SLM and grains size distribution of SLM sample (c)
Fig.6 TEM image and HRTEM images of AlSi10Mg-Er-Zr sample fabricated by SLM (a) TEM image of AlSi10Mg-Er-Zr sample (b) HRTEM image and fast fourier transform (inset) of Al3(Er, Zr) phase (c) HRTEM image and fast fourier transform (inset) of Mg2Si phase
Fig.7 High magnification SEM images and EDS results (mass fraction) of AlSi10Mg-Er-Zr (a) and AlSi10Mg (b) samples fabricated by SLM
Fig.8 Alloying element distributions of AlSi10Mg-Er-Zr sample fabricated by SLM (a) high angle annular dark field (HAADF) image of area scanning region (b) element distribution map (c) Al element (d) Si element (e) Mg element (f) Er element (g) Zr element
Fig.9 Schmid factor distribution maps of AlSi10Mg-Er-Zr (a) and AlSi10Mg (b) samples fabricated by SLM
Fig.10 Texture component distribution mapping of AlSi10Mg-Er-Zr (a) and AlSi10Mg (b) samples
Sample
Cube
Goss
R
P
Shear
Brass
Copper
S
AlSi10Mg-Er-Zr
2.81
1.23
7.13
5.63
3.53
3.41
3.63
1.08
AlSi10Mg
11.70
3.01
7.62
1.40
6.10
6.41
2.33
1.83
Table 3 Texture contents of AlSi10Mg-Er-Zr and AlSi10Mg samples fabricated by SLM
1
Zhang X J, Tang S Y, Zhao H Y, et al. Research status and key technologies of 3D printing [J]. J. Mater. Eng., 2016, 44(2): 122
Zhang S. Research on the forming processes and propertiesin selective laser melting of medical alloy powders [D]. Wuhan: Huazhong University of Science and Technology, 2014
张 升. 医用合金粉末激光选区熔化成形工艺与性能研究 [D]. 武汉: 华中科技大学, 2014
4
Chen J T, Guo Z Y, Wang C Y, et al. Research status of Ti-6Al-4V manufactured by selective laser melting for medical device applications [J]. Laser Technol., 2020, 44: 288
Li X D, Zhao F. 3D printing technology impact on development of industrial design [J]. Key Eng. Mater., 2016, 693: 1901
doi: 10.4028/www.scientific.net/KEM.693.1901
6
Zhong X H. 3D printing technology applied in the field of racing lightweight [D]. Guangzhou: Guangdong University of Technology, 2019
钟兴华. 3D打印技术在赛车轻量化领域应用研究 [D]. 广州: 广东工业大学, 2019
7
Röttger A, Geenen K, Windmann M, et al. Comparison of microstructure and mechanical properties of 316 L austenitic steel processed by selective laser melting with hot-isostatic pressed and cast material [J]. Mater. Sci. Eng., 2016, A678: 365
8
Zhang W Q, Zhu H H, Hu Z H, et al. Study on the selective laser melting of AlSi10Mg [J]. Acta Metall. Sin., 2017, 53: 918
Aboulkhair N T, Simonelli M, Parry L, et al. 3D printing of aluminium alloys: Additive manufacturing of aluminium alloys using selective laser melting [J]. Prog. Mater. Sci., 2019, 106: 100578
doi: 10.1016/j.pmatsci.2019.100578
10
Kempen K, Thijs L, Van Humbeeck J, et al. Mechanical properties of AlSi10Mg produced by selective laser melting [J]. Phys. Proc., 2012, 39: 439
doi: 10.1016/j.phpro.2012.10.059
11
Brandl E, Heckenberger U, Holzinger V, et al. Additive manufactured AlSi10Mg samples using selective laser melting (SLM): Microstructure, high cycle fatigue, and fracture behavior [J]. Mater. Des., 2012, 34: 159
doi: 10.1016/j.matdes.2011.07.067
12
Read N, Wang W, Essa K, et al. Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development [J]. Mater. Des., 2015, 65: 417
doi: 10.1016/j.matdes.2014.09.044
13
Jiang L Y, Liu T T, Zhang C D, et al. Preparation and mechanical properties of CNTs-AlSi10Mg composite fabricated via selective laser melting [J]. Mater. Sci. Eng., 2018, A734: 171
14
Zhao Z Y, Bai P K, Misra R D K, et al. AlSi10Mg alloy nanocomposites reinforced with aluminum-coated graphene: Selective laser melting, interfacial microstructure and property analysis [J]. J. Alloys Compd., 2019, 792: 203
doi: 10.1016/j.jallcom.2019.04.007
15
Xi L X, Gu D D, Guo S, et al. Grain refinement in laser manufactured Al-based composites with TiB2 ceramic [J]. J. Mater. Res. Technol., 2020, 9: 2611
doi: 10.1016/j.jmrt.2020.04.059
16
Xiao Y K, Bian Z Y, Wu Y, et al. Effect of nano-TiB2 particles on the anisotropy in an AlSi10Mg alloy processed by selective laser melting [J]. J. Alloys Compd., 2019, 798: 644
doi: 10.1016/j.jallcom.2019.05.279
17
Li X P, Ji G, Chen Z, et al. Selective laser melting of nano-TiB2 decorated AlSi10Mg alloy with high fracture strength and ductility [J]. Acta Mater., 2017, 129: 183
doi: 10.1016/j.actamat.2017.02.062
18
Wang H Q, Gu D D. Nanometric TiC reinforced AlSi10Mg nanocomposites: Powder preparation by high-energy ball milling and consolidation by selective laser melting [J]. J. Compos. Mater., 2015, 49: 1639
doi: 10.1177/0021998314538870
19
Gao C, Wang Z, Xiao Z, et al. Selective laser melting of TiN nanoparticle-reinforced AlSi10Mg composite: Microstructural, interfacial, and mechanical properties [J]. J. Mater. Process. Technol., 2020, 281: 116618
doi: 10.1016/j.jmatprotec.2020.116618
20
Gao C, Wu W, Shi J, et al. Simultaneous enhancement of strength, ductility, and hardness of TiN/AlSi10Mg nanocomposites via selective laser melting [J]. Addit. Manuf., 2020, 34: 101378
21
Ye H, Huang J Q, Zhang J Q, et al. Microstructure and mechanical properties of nano-WC reinforced AlSi10Mg fabricated by selective laser melting [J]. J. Mater. Eng., 2020, 48(3): 75
Xue G, Ke L D, Zhu H H, et al. Influence of processing parameters on selective laser melted SiCp/AlSi10Mg composites: Densification, microstructure and mechanical properties [J]. Mater. Sci. Eng., 2019, A764: 138155
23
Zhao X, Gu D D, Ma C L, et al. Microstructure characteristics and its formation mechanism of selective laser melting SiC reinforced Al-based composites [J]. Vacuum, 2019, 160: 189
doi: 10.1016/j.vacuum.2018.11.022
24
Spierings A B, Dawson K, Dumitraschkewitz P, et al. Microstructure characterization of SLM-processed Al-Mg-Sc-Zr alloy in the heat treated and HIPed condition [J]. Addit. Manuf., 2018, 20: 173
25
Nie Z R, Wen S P, Huang H, et al. Research progress of Er-containing aluminum alloy [J]. Chin. J. Nonferrous Met., 2011, 21: 2361
Feng Q N. Research on process, microstructures and properties of AlSi10Mg aluminum alloy prepared by laser melting deposition [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017
Aboulkhair N T, Maskery I, Tuck C, et al. The microstructure and mechanical properties of selectively laser melted AlSi10Mg: The effect of a conventional T6-like heat treatment [J]. Mater. Sci. Eng., 2016, A667: 139
28
Xing Z B, Nie Z R, Zou J X, et al. Existing form and effect of erbium in Al-Er alloy [J]. J. Chin. Rare Earth Soc., 2007, 25: 234
Loucif A, Figueiredo R B, Baudin T, et al. Ultrafine grains and the Hall-Petch relationship in an Al-Mg-Si alloy processed by high-pressure torsion [J]. Mater. Sci. Eng., 2012, A532: 139
30
Wu B L, Song L H, Wan G, et al. Distribution of generalized schmid factor in Euler orientation space and rollability of AZ31B alloy with basal texture [J]. J. Mater. Eng. Perform., 2020, 29: 8145
doi: 10.1007/s11665-020-05279-7
31
Yan H L. Mechanical behavior and texture evolution of low stacking fault energy FCC metals at large deformation [D]. Shenyang: Northeastern University, 2012