|
|
Nanostructural Multi-Principal-Element Alloys: Mechanical Properties and Toughening Mechanisms |
LIU Chang1, WU Ge2( ), LU Jian3,4( ) |
1 Center for Alloy Innovation and Design (CAID), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China 2 Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China 3 Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China 4 Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China |
|
Cite this article:
LIU Chang, WU Ge, LU Jian. Nanostructural Multi-Principal-Element Alloys: Mechanical Properties and Toughening Mechanisms. Acta Metall Sin, 2024, 60(1): 16-29.
|
Abstract Enhancing the strength of metallic materials has long been a primary goal for material scientists due to their significant potential for various industrial applications. However, the methods employed to increase the strength of metals often result in reduced deformation ability, leading to what is commonly termed as the strength-deformability trade-off dilemma. This paper offers a review of the advancements made in nanostructured multi-principal-element alloys (MPEAs) and discusses the challenges associated with simultaneously improving strength and deformability. This review summarizes the various common methods used to fabricate nanostructured MPEAs, including severe plastic deformation, physical vapor deposition, and mechanical alloying. In addition, this paper reviews the strengthening and deformation mechanisms intrinsic to these alloys. Finally, a brief outlook on potential future research directions for nanostructured MPEAs is provided.
|
Received: 28 July 2022
|
|
Fund: Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone Shenzhen Park Project(HZQB-KCZYB-2020030) |
Corresponding Authors:
WU Ge, professor, Tel: 13022875977, E-mail: gewuxjtu@xjtu.edu.cn; LU Jian, professor, Tel: (+852)34429653, E-mail: jian.lu@cityu.edu.hk
|
1 |
Campbell F C. Elements of Metallurgy and Engineering Alloys [M]. Materials Park: ASM International, 2008: 41
|
2 |
Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, A375-377: 213
|
3 |
Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
doi: 10.1002/adem.v6:5
|
4 |
Ye Y F, Wang Q, Lu J, et al. High-entropy alloy: Challenges and prospects [J]. Mater. Today, 2016, 19: 349
doi: 10.1016/j.mattod.2015.11.026
|
5 |
Guo S, Hu Q, Ng C, et al. More than entropy in high-entropy alloys: Forming solid solutions or amorphous phase [J]. Intermetallics, 2013, 41: 96
doi: 10.1016/j.intermet.2013.05.002
|
6 |
Lu C Y, Niu L L, Chen N J, et al. Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys [J]. Nat. Commun., 2016, 7: 13564
doi: 10.1038/ncomms13564
pmid: 27976669
|
7 |
Senkov O N, Gorsse S, Miracle D B. High temperature strength of refractory complex concentrated alloys [J]. Acta Mater., 2019, 175: 394
doi: 10.1016/j.actamat.2019.06.032
|
8 |
Chen X F, Wang Q, Cheng Z Y, et al. Direct observation of chemical short-range order in a medium-entropy alloy [J]. Nature, 2021, 592: 712
doi: 10.1038/s41586-021-03428-z
|
9 |
Zhang R P, Zhao S T, Ding J, et al. Short-range order and its impact on the CrCoNi medium-entropy alloy [J]. Nature, 2020, 581: 283
doi: 10.1038/s41586-020-2275-z
|
10 |
Gerard A Y, Han J, McDonnell S J, et al. Aqueous passivation of multi-principal element alloy Ni38Fe20Cr22Mn10Co10: Unexpected high Cr enrichment within the passive film [J]. Acta Mater., 2020, 198: 121
doi: 10.1016/j.actamat.2020.07.024
|
11 |
Sohn S S, da Silva A K, Ikeda Y, et al. Ultrastrong medium-entropy single-phase alloys designed via severe lattice distortion [J]. Adv. Mater., 2019, 31: 1807142
doi: 10.1002/adma.v31.8
|
12 |
Lee C, Chou Y, Kim G, et al. Lattice-distortion-enhanced yield strength in a refractory high-entropy alloy [J]. Adv. Mater., 2020, 32: 2004029
doi: 10.1002/adma.v32.49
|
13 |
Ding Q Q, Zhang Y, Chen X, et al. Tuning element distribution, structure and properties by composition in high-entropy alloys [J]. Nature, 2019, 574: 223
doi: 10.1038/s41586-019-1617-1
|
14 |
Bu Y Q, Wu Y, Lei Z F, et al. Local chemical fluctuation mediated ductility in body-centered-cubic high-entropy alloys [J]. Mater. Today, 2021, 46: 28
doi: 10.1016/j.mattod.2021.02.022
|
15 |
Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys [J]. Intermetallics, 2011, 19: 698
doi: 10.1016/j.intermet.2011.01.004
|
16 |
Wang F L, Balbus G H, Xu S Z, et al. Multiplicity of dislocation pathways in a refractory multiprincipal element alloy [J]. Science, 2020, 370: 95
doi: 10.1126/science.aba3722
pmid: 33004516
|
17 |
Yang T, Zhao Y L, Tong Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys [J]. Science, 2018, 362: 933
doi: 10.1126/science.aas8815
pmid: 30467166
|
18 |
Liang Y J, Wang L J, Wen Y R, et al. High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys [J]. Nat. Commun., 2018, 9: 4063
doi: 10.1038/s41467-018-06600-8
|
19 |
Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534: 227
doi: 10.1038/nature17981
|
20 |
Huang H L, Wu Y, He J Y, et al. Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering [J]. Adv. Mater., 2017, 29: 1701678
doi: 10.1002/adma.v29.30
|
21 |
Lu Y P, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: Eutectic high-entropy alloys [J]. Sci. Rep., 2014, 4: 6200
doi: 10.1038/srep06200
pmid: 25160691
|
22 |
Shi P J, Li R G, Li Y, et al. Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys [J]. Science, 2021, 373: 912
doi: 10.1126/science.abf6986
pmid: 34413235
|
23 |
Ma E, Zhu T. Towards strength-ductility synergy through the design of heterogeneous nanostructures in metals [J]. Mater. Today, 2017, 20: 323
doi: 10.1016/j.mattod.2017.02.003
|
24 |
Zhu K Y, Vassel A, Brisset F, et al. Nanostructure formation mechanism of α-titanium using SMAT [J]. Acta Mater., 2004, 52: 4101
doi: 10.1016/j.actamat.2004.05.023
|
25 |
Shahmir H, Mousavi T, He J Y, et al. Microstructure and properties of a CoCrFeNiMn high-entropy alloy processed by equal-channel angular pressing [J]. Mater. Sci. Eng., 2017, A705: 411
|
26 |
Picak S, Yilmaz H C, Karaman I. Simultaneous deformation twinning and martensitic transformation in CoCrFeMnNi high entropy alloy at high temperatures [J]. Scr. Mater., 2021, 202: 113995
doi: 10.1016/j.scriptamat.2021.113995
|
27 |
Pan Q S, Zhang L X, Feng R, et al. Gradient cell-structured high-entropy alloy with exceptional strength and ductility [J]. Science, 2021, 374: 984
doi: 10.1126/science.abj8114
|
28 |
Čížek J, Haušild P, Cieslar M, et al. Strength enhancement of high entropy alloy HfNbTaTiZr by severe plastic deformation [J]. J. Alloys Compd., 2018, 768: 924
doi: 10.1016/j.jallcom.2018.07.319
|
29 |
Schuh B, Mendez-Martin F, Völker B, et al. Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation [J]. Acta Mater., 2015, 96: 258
doi: 10.1016/j.actamat.2015.06.025
|
30 |
Nguyen N T C, Asghari-Rad P, Sathiyamoorthi P, et al. Ultrahigh high-strain-rate superplasticity in a nanostructured high-entropy alloy [J]. Nat. Commun., 2020, 11: 2736
doi: 10.1038/s41467-020-16601-1
|
31 |
Fang T H, Li W L, Tao N R, et al. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper [J]. Science, 2011, 331: 1587
doi: 10.1126/science.1200177
pmid: 21330487
|
32 |
Liu C, Liu Y, Wang Q, et al. Nano-dual-phase metallic glass film enhances strength and ductility of a gradient nanograined magnesium alloy [J]. Adv. Sci., 2020, 7: 2001480
doi: 10.1002/advs.v7.19
|
33 |
Qin S, Yang M X, Jiang P, et al. Designing structures with combined gradients of grain size and precipitation in high entropy alloys for simultaneous improvement of strength and ductility [J]. Acta Mater., 2022, 230: 117847
doi: 10.1016/j.actamat.2022.117847
|
34 |
Guo W, Pei Z R, Sang X H, et al. Shape-preserving machining produces gradient nanolaminate medium entropy alloys with high strain hardening capability [J]. Acta Mater., 2019, 170: 176
doi: 10.1016/j.actamat.2019.03.024
|
35 |
Sharma A. High entropy alloy coatings and technology [J]. Coatings, 2021, 11: 372
doi: 10.3390/coatings11040372
|
36 |
Ketov S V, Shi X T, Xie G Q, et al. Nanostructured Zr-Pd metallic glass thin film for biochemical applications [J]. Sci. Rep., 2015, 5: 7799
doi: 10.1038/srep07799
pmid: 25589472
|
37 |
Li M X, Sun Y T, Wang C, et al. Data-driven discovery of a universal indicator for metallic glass forming ability [J]. Nat. Mater., 2022, 21: 165
doi: 10.1038/s41563-021-01129-6
|
38 |
Li M X, Zhao S F, Lu Z, et al. High-temperature bulk metallic glasses developed by combinatorial methods [J]. Nature, 2019, 569: 99
doi: 10.1038/s41586-019-1145-z
|
39 |
Yan X H, Zhang Y. High-entropy films and compositional gradient materials [J]. Surf. Technol., 2019, 48(6): 98
|
|
闫薛卉, 张 勇. 高熵薄膜和成分梯度材料 [J]. 表面技术, 2019, 48(6): 98
|
40 |
Zou Y, Ma H, Spolenak R. Ultrastrong ductile and stable high-entropy alloys at small scales [J]. Nat. Commun., 2015, 6: 7748
doi: 10.1038/ncomms8748
pmid: 26159936
|
41 |
Zou Y, Wheeler J M, Ma H, et al. Nanocrystalline high-entropy alloys: A new paradigm in high-temperature strength and stability [J]. Nano Lett., 2017, 17: 1569
doi: 10.1021/acs.nanolett.6b04716
pmid: 28125236
|
42 |
Zhang Z J, Sheng H W, Wang Z J, et al. Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy [J]. Nat. Commun., 2017, 8: 14390
doi: 10.1038/ncomms14390
pmid: 28218267
|
43 |
Chen Y J, Chen D K, An X H, et al. Unraveling dual phase transformations in a CrCoNi medium-entropy alloy [J]. Acta Mater., 2021, 215: 117112
doi: 10.1016/j.actamat.2021.117112
|
44 |
Salemi F, Abbasi M H, Karimzadeh F. Synthesis and thermodynamic analysis of nanostructured CuNiCoZnAl high entropy alloy produced by mechanical alloying [J]. J. Alloys Compd., 2016, 685: 278
doi: 10.1016/j.jallcom.2016.05.274
|
45 |
Vaidya M, Muralikrishna G M, Murty B S. High-entropy alloys by mechanical alloying: A review [J]. J. Mater. Res., 2019, 34: 664
doi: 10.1557/jmr.2019.37
|
46 |
Varalakshmi S, Kamaraj M, Murty B S. Synthesis and characterization of nanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying [J]. J. Alloys Compd., 2008, 460: 253
doi: 10.1016/j.jallcom.2007.05.104
|
47 |
Fu Z Q, Chen W P, Xiao H Q, et al. Fabrication and properties of nanocrystalline Co0.5FeNiCrTi0.5 high entropy alloy by MA-SPS technique [J]. Mater. Des., 2013, 44: 535
doi: 10.1016/j.matdes.2012.08.048
|
48 |
Hall E O. The deformation and ageing of mild steel: III Discussion of results [J]. Proc. Phys. Soc., 1951, 64B: 747
|
49 |
Petch N J. The cleavage strength of polycrystals [J]. J. Iron Steel Inst., 1953, 174: 25
|
50 |
Liu W H, Wu Y, He J Y, et al. Grain growth and the Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy [J]. Scr. Mater., 2013, 68: 526
doi: 10.1016/j.scriptamat.2012.12.002
|
51 |
Schiøtz J, Di Tolla F D, Jacobsen K W. Softening of nanocrystalline metals at very small grain sizes [J]. Nature, 1998, 391: 561
doi: 10.1038/35328
|
52 |
Hu J, Shi Y N, Sauvage X, et al. Grain boundary stability governs hardening and softening in extremely fine nanograined metals [J]. Science, 2017, 355: 1292
doi: 10.1126/science.aal5166
pmid: 28336664
|
53 |
Xin S W, Shen X, Du C C, et al. Bulk nanocrystalline boron-doped VNbMoTaW high entropy alloys with ultrahigh strength, hardness, and resistivity [J]. J. Alloys Compd., 2021, 853: 155995
doi: 10.1016/j.jallcom.2020.155995
|
54 |
Wu G, Liu C, Brognara A, et al. Symbiotic crystal-glass alloys via dynamic chemical partitioning [J]. Mater. Today, 2021, 51: 6
doi: 10.1016/j.mattod.2021.10.025
|
55 |
Zhu Y T, Wu X L. Ductility and plasticity of nanostructured metals: Differences and issues [J]. Mater. Today Nano, 2018, 2: 15
|
56 |
Li H, Zhang H X, Li S Z, et al. Uniting tensile ductility with ultrahigh strength via composition undulation [J]. Nature, 2022, 604: 273
doi: 10.1038/s41586-022-04459-w
|
57 |
Gottstein G. Physical Foundations of Materials Science [M]. Berlin: Springer, 2004: 26
|
58 |
Li Z M. Interstitial equiatomic CoCrFeMnNi high-entropy alloys: Carbon content, microstructure, and compositional homogeneity effects on deformation behavior [J]. Acta Mater., 2019, 164: 400
doi: 10.1016/j.actamat.2018.10.050
|
59 |
Lei Z F, Liu X J, Wu Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes [J]. Nature, 2018, 563: 546
doi: 10.1038/s41586-018-0685-y
|
60 |
Wang Z W, Baker I, Cai Z H, et al. The effect of interstitial carbon on the mechanical properties and dislocation substructure evolution in Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys [J]. Acta Mater., 2016, 120: 228
doi: 10.1016/j.actamat.2016.08.072
|
61 |
Liu C, Liu W J, Xia W Z, et al. Massive interstitial solid solution alloys achieve near-theoretical strength [J]. Nat. Commun., 2022, 13: 1102
doi: 10.1038/s41467-022-28706-w
pmid: 35232964
|
62 |
Schuh B, Völker B, Todt J, et al. Thermodynamic instability of a nanocrystalline, single-phase TiZrNbHfTa alloy and its impact on the mechanical properties [J]. Acta Mater., 2018, 142: 201
doi: 10.1016/j.actamat.2017.09.035
|
63 |
Wang Z W, Lu W J, An F C, et al. High stress twinning in a compositionally complex steel of very high stacking fault energy [J]. Nat. Commun., 2022, 13: 3598
doi: 10.1038/s41467-022-31315-2
pmid: 35739123
|
64 |
Kou H N, Lu J, Li Y. High-strength and high-ductility nanostructured and amorphous metallic materials [J]. Adv. Mater., 2014, 26: 5518
doi: 10.1002/adma.v26.31
|
65 |
Liu X W, Sun L G, Zhu L L, et al. High-order hierarchical nanotwins with superior strength and ductility [J]. Acta Mater., 2018, 149: 397
doi: 10.1016/j.actamat.2018.01.047
|
66 |
Wu G, Balachandran S, Gault B, et al. Crystal-glass high-entropy nanocomposites with near theoretical compressive strength and large deformability [J]. Adv. Mater., 2020, 32: 2002619
doi: 10.1002/adma.v32.34
|
67 |
Sun L G, Wu G, Wang Q, et al. Nanostructural metallic materials: Structures and mechanical properties [J]. Mater. Today, 2020, 38: 114
doi: 10.1016/j.mattod.2020.04.005
|
68 |
Tian L, Cheng Y Q, Shan Z W, et al. Approaching the ideal elastic limit of metallic glasses [J]. Nat. Commun., 2012, 3: 609
doi: 10.1038/ncomms1619
pmid: 22215084
|
69 |
Guo H, Yan P F, Wang Y B, et al. Tensile ductility and necking of metallic glass [J]. Nat. Mater., 2007, 6: 735
pmid: 17704779
|
70 |
Jang D, Greer J R. Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses [J]. Nat. Mater., 2010, 9: 215
doi: 10.1038/nmat2622
pmid: 20139966
|
71 |
Wu G, Chan K C, Zhu L L, et al. Dual-phase nanostructuring as a route to high-strength magnesium alloys [J]. Nature, 2017, 545: 80
doi: 10.1038/nature21691
|
72 |
Takeuchi A, Inoue A. Calculations of amorphous-forming composition range for ternary alloy systems and analyses of stabilization of amorphous phase and amorphous-forming ability [J]. Mater. Trans., 2001, 42: 1435
doi: 10.2320/matertrans.42.1435
|
73 |
Zhao S T, Li Z Z, Zhu C Y, et al. Amorphization in extreme deformation of the CrMnFeCoNi high-entropy alloy [J]. Sci. Adv., 2021, 7: eabb3108
doi: 10.1126/sciadv.abb3108
|
74 |
Wu G, Liu C, Sun L G, et al. Hierarchical nanostructured aluminum alloy with ultrahigh strength and large plasticity [J]. Nat. Commun., 2019, 10: 5099
doi: 10.1038/s41467-019-13087-4
pmid: 31704930
|
75 |
Liu C, Li Z M, Lu W J, et al. Reactive wear protection through strong and deformable oxide nanocomposite surfaces [J]. Nat. Commun., 2021, 12: 5518
doi: 10.1038/s41467-021-25778-y
pmid: 34535645
|
76 |
Chen M W, Ma E, Hemker K J, et al. Deformation twinning in nanocrystalline aluminum [J]. Science, 2003, 300: 1275
pmid: 12714676
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|