Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (4): 457-472    DOI: 10.11900/0412.1961.2021.00561
Overview Current Issue | Archive | Adv Search |
Structure and Glass-Forming Ability of Al-Based Amorphous Alloys
LI Jinfu1,2(), LI Wei1
1.State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2.Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Cite this article: 

LI Jinfu, LI Wei. Structure and Glass-Forming Ability of Al-Based Amorphous Alloys. Acta Metall Sin, 2022, 58(4): 457-472.

Download:  HTML  PDF(2214KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Although Al-based amorphous alloys have excellent mechanical properties and good corrosion resistance, their poor glass-forming ability makes large-scale samples difficult to obtain, limiting their engineering applications. Owing to the close relationship between the glass-forming ability of alloys and their structure, the development of Al-based amorphous alloys is first briefly reviewed to gain a thorough understanding of their component composition. On this basis, the microstructure, composition design theory, relationship between glass-forming ability and composition, and selection of primary phase during crystallization in Al-based amorphous alloys are discussed. Finally, the future study directions for Al-based amorphous alloys are prospected.

Key words:  Al-based amorphous alloy      microstructure      glass-forming ability      crystallization behavior     
Received:  14 December 2021     
ZTFLH:  TG146.21  
Fund: National Natural Science Foundation of China(51620105012);National Natural Science Foundation of China(51771116);National Natural Science Foundation of China(51821001)
About author:  LI Jinfu, professor, Tel: (021)54748530, E-mail: jfli@sjtu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00561     OR     https://www.ams.org.cn/EN/Y2022/V58/I4/457

AlloyTiZrHfVNbTaCrMoW
Al70Fe20ETM10
Al70Co20ETM10
Al70Ni20ETM10
Al70Cu20ETM10
Table 1  Glass formation in Al70LTM20ETM10 (LTM = Fe, Co, Ni, Cu; ETM = Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W) alloys solidified by melt spinning[15]
NRN*NRN*
30.155141.047
40.225151.116
50.362161.183
60.414171.248
70.518181.311
80.617191.373
90.710201.433
100.799211.491
110.884221.548
120.902231.604
130.976241.659
Table 2  The coordination number (N) in the atomic cluster and the corresponding radius ratio between the central atom and the first neighbor coordination atom (RN*)[36]
Fig.1  Differential intensity profile of amorphous Al90Y10 (top) determined from the intensity profiles (bottom) measured at incident energies of 17.0126 and 16.7380 keV, which correspond to the energies of 25 and 300 eV below the Y K-absorption edge. The arrow indicates the prepeak (Q is the wave number in inerted space)[41]
Fig.2  Random close packing of quasi-equivalent, solute-centered atomic clusters to form Al-based amorphous alloys, as shown in ab initio molecular dynamics (MD) simulations[67]
(a) the ternary Al89Ni5La6 system (b) the quaternary Al85Ni5Y8Co2 system
Fig.3  Distribution of the coordination number (CN) of Ni and La in the Al89Ni5La6 amorphous alloy. The bottom panel shows the topologies of dominant Ni-centered, and La-centered clusters with different sizes and CN numbers (listed in the parentheses) as frequently found in the amorphous alloy[67]
Fig.4  The concentration (atomic fraction) as a function of atomic radius of Al-based amorphous alloys (a) and bulk amorphous alloys (b)[35]
Fig.5  Bright-field TEM images of as-quenched (a) and annealed (220oC for 1 min) (b) samples of Al88Ni4Gd6La2 amorphous alloy[118]
AlloyPrimary crystallization product
Al87Ni6La7fcc-Al + metastable phase
Al87Ni6Ce7fcc-Al + metastable phase
Al87Ni6Y7fcc-Al
Al87Ni6Nd7fcc-Al
Al85Ni6La9Single metastable phase
Al85Ni6Ce9Single metastable phase
Al85Ni6Y9Single metastable phase
Al85Ni6Nd9fcc-Al
Table 3  Primary crystallization product of Al87Ni6RE7 and Al85Ni6RE9 (RE = La, Ce, Nd, Y) amorphous alloys[145]
Fig.6  Al-isoconcentration contours as a function of the selected concentration (as marked) in as-quenched Al86Ni9La5 (a-d) and (Al86Ni9La5)98Si2 (e-h) ribbons[147]
1 Greer A L. Metallic glasses [J]. Science, 1995, 267: 1947
2 Zeng Q S, Yin Z L, Lou H B. Polyamorphic transitions in metallic glasses [J]. Acta Metall. Sin., 2021, 57: 492
曾桥石, 尹梓梁, 楼鸿波. 金属玻璃中的非晶多形态转变 [J]. 金属学报, 2021, 57: 492
3 Wang W H, Dong C, Shek C H. Bulk metallic glasses [J]. Mater. Sci. Eng., 2004, R44: 45
4 Qiao J C, Wang Q, Pelletier J M, et al. Structural heterogeneities and mechanical behavior of amorphous alloys [J]. Prog. Mater. Sci., 2019, 104: 250
5 Predecki P, Giessen B C, Grant N J. New metastable alloy phases of gold, silver, and aluminum [J]. Trans. Metall. Soc. AIME, 1965, 233: 1438
6 Ramachandrarao P, Laridjani M, Cahn R W. Diamond as a splat-cooling substrate [J]. Int. J. Mater. Res., 1972, 63: 43
7 Davies H A, Hull J B. A non-crystalline phase in splat-quenched germanium [J]. Scr. Metall., 1973, 7: 637
8 Grant N J, Giessen B C. Proceedings of the Second International Conference on Rapidly Quenched Metals [M]. Cambridge, MA: MIT Press, 1975: 1
9 Sastry G V S, Suryanarayana C, Srivastava O N. Crystallization of an amorphous aluminum-palladium alloy [J]. Trans. Indian Inst. Met., 1978, 31: 292
10 Furrer P, Warlimont H. Crystalline and amorphous structures of rapidly solidified Al-Cr alloys [J]. Mater. Sci. Eng., 1977, 28: 127
11 Inoue A, Kitamura A, Masumoto T. The effect of aluminium on mechanical properties and thermal stability of (Fe, Co, Ni)-Al-B ternary amorphous alloys [J]. J. Mater. Sci., 1981, 16: 1895
12 Suzuki R O, Komatsu Y, Kobayashi K F, et al. Formation and crystallization of Al-Fe-Si amorphous alloys [J]. J. Mater. Sci., 1983, 18: 1195
13 Inoue A, Bizen Y, Kimura H M, et al. Development of compositional short-range ordering in an Al50Ge40Mn10 amorphous alloy upon annealing [J]. J. Mater. Sci. Lett., 1987, 6: 811
14 Inoue A, Yamamoto M, Kimura H M, et al. Ductile aluminium-base amorphous alloys with two separate phases [J]. J. Mater. Sci. Lett., 1987, 6: 194
15 Tsai A P, Inoue A, Masumoto T. Formation of metal-metal type aluminum-based amorphous alloys [J]. Metall. Trans., 1988, 19A: 1369
16 Tsai A P, Inoue A, Masumoto T. Ductile Al-Ni-Zr amorphous alloys with high mechanical strength [J]. J. Mater. Sci. Lett., 1988, 7: 805
17 Inoue A, Ohtera K, Masumoto T. New amorphous Al-Y, Al-La and Al-Ce alloys prepared by melt spinning [J]. Jpn. J. Appl. Phys., 1988, 27: L736
18 Inoue A, Zhang T, Kita K, et al. Mechanical strengths, thermal stability and electrical resistivity of aluminum-rare earth metal binary amorphous alloys [J]. Mater. Trans., JIM, 1989, 30: 870
19 Inoue A, Ohtera K, Zhang T, et al. New amorphous Al-Ln (Ln = Pr, Nd, Sm or Gd) alloys prepared by melt spinning [J]. Jpn. J. Appl. Phys., 1988, 27: L1583
20 Inoue A, Ohtera K, Tsai A P, et al. New amorphous alloys with good ductility in Al-Y-M and Al-La-M (M = Fe, Co, Ni or Cu) systems [J]. Jpn. J. Appl. Phys., 1988, 27: L280
21 Inoue A, Ohtera K, Kita K, et al. New amorphous alloys with good ductility in Al-Ce-M (M = Nb, Fe, Co, Ni or Cu) systems [J]. Jpn. J. Appl. Phys., 1988, 27: L1796
22 Wang S H, Yang C C, Bian X F. Developing aluminum-based amorphous alloys [J]. Mater. Rev., 2012, 26(1): 88
王胜海, 杨春成, 边秀房. 铝基非晶合金的研究进展 [J]. 材料导报, 2012, 26(1): 88
23 Yang B J, Yao J H, Zhang J, et al. Al-rich bulk metallic glasses with plasticity and ultrahigh specific strength [J]. Scr. Mater., 2009, 61: 423
24 He Y, Poon S J, Shiflet G J. Synthesis and properties of metallic glasses that contain aluminum [J]. Science, 1988, 241: 1640
25 Inoue A. Amorphous, nanoquasicrystalline and nanocrystalline alloys in Al-based systems [J]. Prog. Mater. Sci., 1998, 43: 365
26 Kim Y H, Inoue A, Masumoto T. Ultrahigh tensile strengths of Al88Y2Ni9 M1 (M = Mn or Fe) amorphous alloys containing finely dispersed FCC-Al particles [J]. Mater. Trans., JIM, 1990, 31: 747
27 Inoue A, Kimura H. Fabrications and mechanical properties of bulk amorphous, nanocrystalline, nanoquasicrystalline alloys in aluminum-based system [J]. J. Light Met., 2001, 1: 31
28 Debenedetti P G, Stillinger F H. Supercooled liquids and the glass transition [J]. Nature, 2001, 410: 259
29 Bernal J D. A geometrical approach to the structure of liquids [J]. Nature, 1959, 183: 141
30 Bernal J D. Geometry of the structure of monatomic liquids [J]. Nature, 1960, 185: 68
31 Gaskell P H. New structural model for transition metal-metalloid glasses [J]. Nature, 1978, 276: 484
32 Gaskell P H. New structural model for amorphous transition metal silicides, borides, phosphides and carbides [J]. J. Non-Cryst. Solids, 1979, 32: 207
33 Nelson D R, Spaepen F. Polytetrahedral order in condensed matter [J]. Solid State Phys., 1989, 42: 1
34 Nelson D R. Order, frustration, and defects in liquids and glasses [J]. Phys. Rev., 1983, 28B: 5515
35 Senkov O N, Miracle D B. Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys [J]. Mater. Res. Bull., 2001, 36: 2183
36 Miracle D B, Sanders W S, Senkov O N. The influence of efficient atomic packing on the constitution of metallic glasses [J]. Philos. Mag., 2003, 83: 2409
37 Miracle D B, Senkov O N. A geometric model for atomic configurations in amorphous Al alloys [J]. J. Non-Cryst. Solids, 2003, 319: 174
38 Miracle D B. A structural model for metallic glasses [J]. Nat. Mater., 2004, 3: 697
39 Miracle D B. The efficient cluster packing model—An atomic structural model for metallic glasses [J]. Acta Mater., 2006, 54: 4317
40 Yi J J. Glass forming ability and crystallization behavior of Al-Ni-Re alloys [D]. Shanghai: Shanghai Jiao Tong University, 2016
乙姣姣. Al-Ni-RE合金的非晶形成能力与晶化行为 [D]. 上海: 上海交通大学, 2016
41 Matsubara E, Waseda Y, Inoue A, et al. Anomalous X-ray scattering on amorphous Al87Y8Ni5 and Al90Y10 alloys [J]. Z. Naturforsch., 1989, 44A: 814
42 Hsieh H Y, Egami T, He Y, et al. Short range ordering in amorphous Al90Fe x Ce10 - x [J]. J. Non-Cryst. Solids, 1991, 135: 248
43 Hsieh H Y, Toby B H, Egami T, et al. Atomic structure of amorphous Al90Fe x Ce10 - x [J]. J. Mater. Res., 1990, 5: 2807
44 Zhang L, Wu Y S, Bian X F, et al. Origin of the prepeak in the structure factors of liquid and amorphous Al-Fe-Ce alloys [J]. J. Phys. Condens. Matter, 1999, 11: 7959
45 Zhang L, Wu Y S, Bian X F, et al. Short-range and medium-range order in liquid and amorphous Al90Fe5Ce5 alloys [J]. J. Non-Cryst. Solids, 2000, 262: 169
46 Mansour A N, Wong C P, Brizzolara R A. Atomic structure of amorphous Al100 - 2 x Co x Ce x (x = 8, 9, and 10) and Al80Fe10Ce10 alloys: An XAFS study [J]. Phys. Rev., 1994, 50B: 12401
47 Mansour A N, Marcelli A, Cibin G, et al. Amorphous Al90Fe x Ce10 - x alloys: X-ray absorption analysis of the Al, Fe and Ce local atomic and electronic structures [J]. Phys. Rev., 2002, 65B: 134207
48 Yang H, Wang J Q, Li Y. Influence of TM and RE elements on glass formation of the ternary Al-TM-RE systems [J]. J. Non-Cryst. Solids, 2008, 354: 3473
49 Saksl K, Jóvári P, Franz H, et al. Atomic structure of Al88Y7Fe5 metallic glass [J]. J. Appl. Phys., 2005, 97: 113507
50 Saksl K, Jóvári P, Franz H, et al. Atomic structure of Al89La6Ni5 metallic glass [J]. J. Phys.: Condens. Matter, 2006, 18: 7579
51 Bacewicz R, Antonowicz J. XAFS study of amorphous Al-RE alloys [J]. Scr. Mater., 2006, 54: 1187
52 Zalewski W, Antonowicz J, Bacewicz R, et al. Local atomic order in Al-based metallic glasses studied using XAFS method [J]. J. Alloys Compd., 2009, 468: 40
53 Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element [J]. Mater. Trans., 2005, 46: 2817
54 Egami T. The atomic structure of aluminum based metallic glasses and universal criterion for glass formation [J]. J. Non-Cryst. Solids, 1996, 205-207: 575
55 Xiong X Z, Yi J J, Kong L T, et al. The atomic packing structure of Al-(TM)-Y metallic glasses [J]. Intermetallics, 2019, 111: 106505
56 Xiong X Z. Glass forming ability and atomic packing structure of Al-based amorphous alloys [D]. Shanghai: Shanghai Jiao Tong University, 2019
熊贤仲. Al基非晶合金的玻璃形成能力与原子堆垛结构 [D]. 上海: 上海交通大学, 2019
57 Waseda Y. The Structure of Non-Crystalline Materials [M]. New York: McGraw-Hill, 1980: 1
58 Zhang F, Sun Y, Ye Z, et al. Solute-solute correlations responsible for the prepeak in structure factors of undercooled Al-rich liquids: A molecular dynamics study [J]. J. Phys. Condens. Matter, 2015, 27: 205701
59 Tang L, Yang Z J, Wen T Q, et al. Short- and medium-range orders in Al90Tb10 glass and their relation to the structures of competing crystalline phases [J]. Acta Mater., 2021, 204: 116513
60 Ahn K, Louca D, Poon S J, et al. Topological and chemical ordering induced by Ni and Nd in Al87Ni7Nd6 metallic glass [J]. Phys. Rev., 2004, 70B: 224103
61 Cheng Y Q, Ma E. Atomic-level structure and structure-property relationship in metallic glasses [J]. Prog. Mater. Sci., 2011, 56: 379
62 Jakse N, Lebacq O, Pasturel A. Ab initio molecular-dynamics simulations of short-range order in liquid Al80Mn20 and Al80Ni20 alloys [J]. Phys. Rev. Lett., 2004, 93: 207801
63 Yu C Y, Hui X D, Chen X H, et al. Ab initio molecular dynamics simulation of the atom packing and density of Al-Ni amorphous alloys [J]. Sci. China Technol. Sci., 2010, 53: 3175
64 Wang F R, Zhang H P, Li M Z. Correlation between structure and glass-forming ability in Al86Ni14 - x La x (x = 3, 5, 9) alloys: An ab initio molecular dynamics study [J]. J. Alloys Compd., 2018, 763: 392
65 Cheng Y Q, Ma E, Sheng H W. Atomic level structure in multicomponent bulk metallic glass [J]. Phys. Rev. Lett., 2009, 102: 245501
66 Sun Y, Zhang Y, Zhang F, et al. Cooling rate dependence of structural order in Al90Sm10 metallic glass [J]. J. Appl. Phys., 2016, 120: 015901
67 Sheng H W, Cheng Y Q, Lee P L, et al. Atomic packing in multicomponent aluminum-based metallic glasses [J]. Acta Mater., 2008, 56: 6264
68 Turnbull D. Under what conditions can a glass be formed? [J]. Contemp. Phys., 1969, 10: 473
69 Inoue A. High strength bulk amorphous alloys with low critical cooling rates (Overview) [J]. Mater. Trans., JIM, 1995, 36: 866
70 Lu Z P, Liu C T. Glass formation criterion for various glass-forming systems [J]. Phys. Rev. Lett., 2003, 91: 115505
71 Lu Z P, Liu C T. A new glass-forming ability criterion for bulk metallic glasses [J]. Acta Mater., 2002, 50: 3501
72 Ma C S, Zhang J, Hou W L, et al. Efficient atomic packing clusters and glass formation in ternary Al-based metallic glasses [J]. Philos. Mag. Lett., 2008, 88: 599
73 Yang B J, Yao J H, Chao Y S, et al. Developing aluminum-based bulk metallic glasses [J]. Philos. Mag., 2010, 90: 3215
74 Zhang Z, Xiong X Z, Zhou W, et al. Glass forming ability and crystallization behavior of Al-Ni-RE metallic glasses [J]. Intermetallics, 2013, 42: 23
75 Egami T, Waseda Y. Atomic size effect on the formability of metallic glasses [J]. J. Non-Cryst. Solids, 1984, 64: 113
76 Lisboa R D S, Bolfarini C, Botta F W J, et al. Topological instability as a criterion for design and selection of aluminum-based glass-former alloys [J]. Appl. Phys. Lett., 2005, 86: 211904
77 Ueno S, Waseda Y. Evaluation of the optimum solute concentration for good glass formability in multi-component alloys [J]. J. Mater. Eng., 1987, 9: 199
78 Waseda Y, Chen H S, Thomas Jacob K, et al. On the glass forming ability of liquid alloys [J]. Sci. Technol. Adv. Mater., 2008, 9: 023003
79 Zhang Z, Xiong X Z, Yi J J, et al. Crystallization behavior and thermal stability of Al-Ni-RE metallic glasses [J]. Acta Phys. Sin., 2013, 62: 136401
张 章, 熊贤仲, 乙姣姣 等. Al-Ni-RE非晶合金的晶化行为和热稳定性 [J]. 物理学报, 2013, 62: 136401
80 Nagel S R, Tauc J. Nearly-free-electron approach to the theory of metallic glass alloys [J]. Phys. Rev. Lett., 1975, 35: 380
81 Wu N C, Lian J B, Wang R, et al. Effect of element types on the glass forming ability of Al-TM-RE ternary metallic glasses using electron structure guiding [J]. J. Alloys Compd., 2017, 723: 123
82 Shen Y, Perepezko J H. Al-based amorphous alloys: Glass-forming ability, crystallization behavior and effects of minor alloying additions [J]. J. Alloys Compd., 2017, 707: 3
83 Wu R I, Wilde G, Perepezko J H. Glass formation and primary nanocrystallization in Al-base metallic glasses [J]. Mater. Sci. Eng., 2001, A301: 12
84 Zhang Z. Glass forming ability and crystallization behavior of Al-Ni-Re metallic glasses [D]. Shanghai: Shanghai Jiao Tong University, 2013
张 章. Al-Ni-RE非晶合金的非晶形成能力与晶化行为 [D]. 上海: 上海交通大学, 2013
85 Li F, Liu X J, Hou H Y, et al. Structural origin underlying poor glass forming ability of Al metallic glass [J]. J. Appl. Phys., 2011, 110: 013519
86 Ashkenazy Y, Averback R S. Kinetic stages in the crystallization of deeply undercooled body-centered-cubic and face-centered-cubic metals [J]. Acta Mater., 2010, 58: 524
87 Yan Z Z, Sheng H, Ma E, et al. Intermediate structural evolution preceding growing BCC crystal interface in deeply undercooled monatomic metallic liquids [J]. Acta Mater., 2021, 202: 387
88 Louzguine-Luzgin D V, Miracle D B, Inoue A. Intrinsic and extrinsic factors influencing the glass-forming ability of alloys [J]. Adv. Eng. Mater., 2008, 10: 1008
89 Huang Z H. Formation and crystallization behaviors of Al-TM-RE based amorphous alloys [D]. Shanghai: Shanghai Jiao Tong University, 2008
黄正华. Al-TM-RE系非晶合金形成及其晶化行为的研究 [D]. 上海: 上海交通大学, 2008
90 Sanders W S, Warner J S, Miracle D B. Stability of Al-rich glasses in the Al-La-Ni system [J]. Intermetallics, 2006, 14: 348
91 Zhang Z, Xiong X Z, Yi J J, et al. Effects of substitution of La by other rare-earth elements on the glass forming ability of Al86Ni9La5 alloy [J]. J. Non-Cryst. Solids, 2013, 369: 1
92 Wu N C, Zuo L, Wang J Q, et al. Designing aluminum-rich bulk metallic glasses via electronic-structure-guided microalloying [J]. Acta Mater., 2016, 108: 143
93 Yang B J, Lu W Y, Zhang J L, et al. Melt fluxing to elevate the forming ability of Al-based bulk metallic glasses [J]. Sci. Rep., 2017, 7: 11053
94 Liu Y, Wang J, Qin J Y, et al. Influence of Ag substitution on the local structure and glass-forming ability of Al86Ni(8 - x)Y6Ag x (x = 0, 1, 2) liquids [J]. Phys. Chem. Liq., 2016, 54: 98
95 Audebert F, Galano M, Saporiti F. The use of Nb in rapid solidified Al alloys and composites [J]. J. Alloys Compd., 2014, 615 (): S621
96 Jun J H, Kim J M, Kim K T, et al. Glass formability and thermal stability of Al-Ni-Y-Be amorphous alloys [J]. J. Alloys Compd., 2007, 434-435: 190
97 Chen S F, Chen J K, Lin S L, et al. Effects of B upon glass forming ability of Al87Y8Ni5 amorphous alloy [J]. J. Alloys Compd., 2013, 565: 29
98 Wang J Q, Liu Y H, Imhoff S, et al. Enhance the thermal stability and glass forming ability of Al-based metallic glass by Ca minor-alloying [J]. Intermetallics, 2012, 29: 35
99 Sha P F, Qi Z, Zhang Z H. Effect of Ag or Pd additions on the microstructure, crystallization and thermal stability of Al-Ni-Ce amorphous alloys [J]. Intermetallics, 2010, 18: 1699
100 Yi J J, Xiong X Z, Inoue A, et al. Glass forming ability of Al-Ni-La alloys with Si addition [J]. J. Alloys Compd., 2015, 650: 578
101 Zhong Z C, Jiang X Y, Greer A L. Micro structure and hardening of Al-based nanophase composites [J]. Mater. Sci. Eng., 1997, A226-228: 531
102 Holland-Moritz D. Short-range order and solid-liquid interfaces in undercooled metallic melts [J]. Mater. Sci. Eng., 2001, A304-306: 108
103 Güntherodt H J, Beck H. Glassy Metals I: Ionic Structure, Electronic Transport, and Crystallization [M]. New York: Springer-Verlag, 1981: 1
104 Allen D R, Foley J C, Perepezko J H. Nanocrystal development during primary crystallization of amorphous alloys [J]. Acta Mater., 1998, 46: 431
105 Blank-Bewersdorff M. Crystallization behaviour of Al86Ni10Zr4 and Al86Fe10Zr4 metallic glasses [J]. J. Mater. Sci. Lett., 1991, 10: 1225
106 Nakazato K, Kawamura Y, Tsai A P, et al. On the growth of nanocrystalline grains in an aluminum-based amorphous alloy [J]. Appl. Phys. Lett., 1993, 63: 2644
107 Inoue A, Nakazato K, Kawamura Y, et al. Effect of Cu or Ag on the formation of coexistent nanoscale Al particles in Al-Ni-M-Ce (M = Cu or Ag) amorphous alloys [J]. Mater. Trans., JIM, 1994, 35: 95
108 Foley J C, Allen D R, Perepezko J H. Analysis of nanocrystal development in Al-Y-Fe and Al-Sm glasses [J]. Scr. Mater., 1996, 35: 655
109 Tsai A P, Kamiyama T, Kawamura Y, et al. Formation and precipitation mechanism of nanoscale Al particles in Al-Ni base amorphous alloys [J]. Acta Mater., 1997, 45: 1477
110 Wilde G, Sieber H, Perepezko J H. Glass formation versus nanocrystallization in an Al92Sm8 alloy [J]. Scr. Mater., 1999, 40: 779
111 Perepezko J H, Hebert R J, Tong W S. Amorphization and nanostructure synthesis in Al alloys [J]. Intermetallics, 2002, 10: 1079
112 Perepezko J H, Hebert R J, Tong W S, et al. Nanocrystallization reactions in amorphous aluminum alloys [J]. Mater. Trans., 2003, 44: 1982
113 Perepezko J H, Hebert R J, Wu R I, et al. Primary crystallization in amorphous Al-based alloys [J]. J. Non-Cryst. Solids, 2003, 317: 52
114 Perepezko J H. Nucleation-controlled reactions and metastable structures [J]. Prog. Mater. Sci., 2004, 49: 263
115 Stratton W G, Hamann J, Perepezko J H, et al. Aluminum nanoscale order in amorphous Al92Sm8 measured by fluctuation electron microscopy [J]. Appl. Phys. Lett., 2005, 86: 141910
116 Lay M D H, Hill A J, Saksida P G, et al. 27Al NMR measurement of fcc Al configurations in as-quenched Al85Ni11Y4 metallic glass and crystallization kinetics of Al nanocrystals [J]. Acta Mater., 2012, 60: 79
117 Spowart J E, Miracle D B, Mullens H M. The influence of solute distribution on the high nucleation density of Al crystals in amorphous aluminum alloys [J]. J. Non-Cryst. Solids, 2004, 336: 202
118 Gangopadhyay A K, Croat T K, Kelton K F. The effect of phase separation on subsequent crystallization in Al88Gd6La2Ni4 [J]. Acta Mater., 2000, 48: 4035
119 Antonowicz J, Yavari A R, Vaughan G. Nanocrystallization of Al92Sm8 amorphous alloy studied in situ by real-time X-ray diffraction [J]. Nanotechnology, 2004, 15: 1038
120 Antonowicz J. Phase separation and nanocrystal formation in Al-based metallic glasses [J]. J. Alloys Compd., 2007, 434-435: 126
121 Antonowicz J. Atomic packing and phase separation in Al-rare earth metallic glasses [J]. J. Mater. Sci., 2010, 45: 5040
122 Antonowicz J, Jezierska E, Kêdzierski M, et al. Early stages of phase separation and nanocrystallization in Al-rare earth metallic glasses studied using SAXS/WAXS and HRTEM methods [J]. Rev. Adv. Mater. Sci., 2008, 18: 454
123 Antonowicz J, Yavari A R, Botta W J, et al. Phase separation and nanocrystallization in Al92Sm8 metallic glass [J]. Philos. Mag., 2006, 86: 4235
124 Antonowicz J, Kędzierski M, Jezierska E, et al. Small-angle X-ray scattering from phase-separating amorphous metallic alloys undergoing nanocrystallization [J]. J. Alloys Compd., 2009, 483: 116
125 Wang Y B, Yang H W, Sun B B, et al. Evidence of phase separation correlated with nanocrystallization in Al85Ni5Y6Fe2Co2 metallic glass [J]. Scr. Mater., 2006, 55: 469
126 Radiguet B, Blavette D, Wanderka N, et al. Segregation-controlled nanocrystallization in an Al-Ni-La metallic glass [J]. Appl. Phys. Lett., 2008, 92: 103126
127 Sahu K K, Mauro N A, Longstreth-Spoor L, et al. Phase separation mediated devitrification of Al88Y7Fe5 glasses [J]. Acta Mater., 2010, 58: 4199
128 Tian N, Ohnuma M, Ohkubo T, et al. Primary crystallization of an Al88Gd6Er2Ni4 metallic glass [J]. Mater. Trans., 2005, 46: 2880
129 Hume-Rothery W, Anderson E. Eutectic compositions and liquid immiscibility in certain binary alloys [J]. Philos. Mag., 1960, 5: 383
130 Sommer F. Association model for the description of thermodynamic functions of liquid alloys: II. Numerical treatment and results [J]. Int. J. Mater. Res., 1982, 73: 77
131 Bokeloh J, Boucharat N, Rösner H, et al. Primary crystallization in Al-rich metallic glasses at unusually low temperatures [J]. Acta Mater., 2010, 58: 3919
132 Huang Z H, Li J F, Rao Q L, et al. Effects of replacing Ni by Co on the crystallization behaviors of Al-Ni-La amorphous alloys [J]. Intermetallics, 2008, 16: 727
133 Huang Z H, Li J F, Rao Q L, et al. Thermal stability and primary phase of Al-Ni(Cu)-La amorphous alloys [J]. J. Alloys Compd., 2008, 463: 328
134 Cuevas F G, Lozano-Perez S, Aranda R M, et al. Crystallisation of amorphous Al-Y-Ni-(Cu) alloys [J]. J. Non-Cryst. Solids, 2019, 512: 15
135 Cuevas F G, Lozano-Perez S, Aranda R M, et al. Crystallisation of amorphous Al-Sm-Ni-(Cu) alloys [J]. Intermetallics, 2019, 112: 106537
136 Mansouri M, Varahram N, Simchi A. Effect of copper on the thermal stability and non-isothermal crystallization behavior of Al86Ni10 - x Cu x RE4 (x = 0.5-2.5) amorphous alloys prepared by melt spinning [J]. J. Non-Cryst. Solids, 2019, 506: 46
137 Cuevas F G, Lozano-Perez S, Aranda R M, et al. Crystallization process and microstructural evolution of melt spun Al-RE-Ni-(Cu) ribbons [J]. Metals, 2020, 10: 443
138 Zhang Y, Warren P J, Cerezo A. Effect of Cu addition on nanocrystallisation of Al-Ni-Sm amorphous alloy [J]. Mater. Sci. Eng., 2002, A327: 109
139 Hong S J, Warren P J, Chun B S. Nanocrystallization behaviour of Al-Y-Ni with Cu additions [J]. Mater. Sci. Eng., 2001, A304-306: 362
140 Inoue A, Ohtera K, Tsai A P, et al. Aluminum-based amorphous alloys with tensile strength above 980 MPa (100 kg/mm2) [J]. Jpn. J. Appl. Phys., 1988, 27: L479
141 Chang I T H, Svec P, Gogebakan M, et al. Rapidly solidified Al85Ni15 - x Y x (x = 5, 8, 10) alloys [J]. Mater. Sci. Forum, 1996, 225-227: 335
142 Huang Z H, Li J F, Rao Q L, et al. Dependences of the crystallization behavior of Al-Ni-La amorphous alloys on La and Ni contents [J]. J. Non-Cryst. Solids, 2008, 354: 1671
143 Louzguine D V, Inoue A. Full or partial replacement of Y by rare-earth and some other elements in the Al85Y8Ni5Co2 alloy [J]. J. Light Met., 2001, 1: 105
144 Louzguine-Luzgin D V, Inoue A. Structure and transformation behaviour of a rapidly solidified Al-Y-Ni-Co-Pd alloy [J]. J. Alloys Compd., 2005, 399: 78
145 Huang Z H, Li J F, Rao Q L, et al. Primary crystallization of Al-Ni-RE amorphous alloys with different type and content of RE [J]. Mater. Sci. Eng., 2008, A489: 380
146 Yi J J, Xu W Q, Xiong X Z, et al. Glass-forming ability and crystallization behavior of Al86Ni9La5 metallic glass with Si addition [J]. Adv. Eng. Mater., 2016, 18: 972
147 Yi J J, Kong L T, Ferry M, et al. Origin of the separated α-Al nanocrystallization with Si added to Al86Ni9La5 amorphous alloy [J]. Mater. Charact., 2021, 178: 111199
148 Li W, Yang L, Zhang Y G, et al. Influences of Si addition on the thermal stability and crystallization behavior of Al-Y binary amorphous alloys [J]. J. Alloys Compd., 2021, 873: 159816
149 Li W, Kong L T, Li J F. The alloying effects of Ge and Si on thermal stability and crystallization behavior of Al-Y binary amorphous alloys [J]. J. Non-Cryst. Solids, 2022, 575: 121197
150 Guan P F, Sun S J. Atomic-level study in the structure and its instability of metallic glasses [J]. Acta Metall. Sin., 2021, 57: 501
管鹏飞, 孙胜君. 金属玻璃结构及其失稳的原子层次研究 [J]. 金属学报, 2021, 57: 501
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[11] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[12] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[13] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[14] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[15] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
No Suggested Reading articles found!