Structure and Glass-Forming Ability of Al-Based Amorphous Alloys
LI Jinfu1,2(), LI Wei1
1.State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China 2.Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Cite this article:
LI Jinfu, LI Wei. Structure and Glass-Forming Ability of Al-Based Amorphous Alloys. Acta Metall Sin, 2022, 58(4): 457-472.
Although Al-based amorphous alloys have excellent mechanical properties and good corrosion resistance, their poor glass-forming ability makes large-scale samples difficult to obtain, limiting their engineering applications. Owing to the close relationship between the glass-forming ability of alloys and their structure, the development of Al-based amorphous alloys is first briefly reviewed to gain a thorough understanding of their component composition. On this basis, the microstructure, composition design theory, relationship between glass-forming ability and composition, and selection of primary phase during crystallization in Al-based amorphous alloys are discussed. Finally, the future study directions for Al-based amorphous alloys are prospected.
Fund: National Natural Science Foundation of China(51620105012);National Natural Science Foundation of China(51771116);National Natural Science Foundation of China(51821001)
About author: LI Jinfu, professor, Tel: (021)54748530, E-mail: jfli@sjtu.edu.cn
Table 1 Glass formation in Al70LTM20ETM10 (LTM = Fe, Co, Ni, Cu; ETM = Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W) alloys solidified by melt spinning[15]
N
N
3
0.155
14
1.047
4
0.225
15
1.116
5
0.362
16
1.183
6
0.414
17
1.248
7
0.518
18
1.311
8
0.617
19
1.373
9
0.710
20
1.433
10
0.799
21
1.491
11
0.884
22
1.548
12
0.902
23
1.604
13
0.976
24
1.659
Table 2 The coordination number (N) in the atomic cluster and the corresponding radius ratio between the central atom and the first neighbor coordination atom ()[36]
Fig.1 Differential intensity profile of amorphous Al90Y10 (top) determined from the intensity profiles (bottom) measured at incident energies of 17.0126 and 16.7380 keV, which correspond to the energies of 25 and 300 eV below the Y K-absorption edge. The arrow indicates the prepeak (Q is the wave number in inerted space)[41]
Fig.2 Random close packing of quasi-equivalent, solute-centered atomic clusters to form Al-based amorphous alloys, as shown in ab initio molecular dynamics (MD) simulations[67] (a) the ternary Al89Ni5La6 system (b) the quaternary Al85Ni5Y8Co2 system
Fig.3 Distribution of the coordination number (CN) of Ni and La in the Al89Ni5La6 amorphous alloy. The bottom panel shows the topologies of dominant Ni-centered, and La-centered clusters with different sizes and CN numbers (listed in the parentheses) as frequently found in the amorphous alloy[67]
Fig.4 The concentration (atomic fraction) as a function of atomic radius of Al-based amorphous alloys (a) and bulk amorphous alloys (b)[35]
Fig.5 Bright-field TEM images of as-quenched (a) and annealed (220oC for 1 min) (b) samples of Al88Ni4Gd6La2 amorphous alloy[118]
Alloy
Primary crystallization product
Al87Ni6La7
fcc-Al + metastable phase
Al87Ni6Ce7
fcc-Al + metastable phase
Al87Ni6Y7
fcc-Al
Al87Ni6Nd7
fcc-Al
Al85Ni6La9
Single metastable phase
Al85Ni6Ce9
Single metastable phase
Al85Ni6Y9
Single metastable phase
Al85Ni6Nd9
fcc-Al
Table 3 Primary crystallization product of Al87Ni6RE7 and Al85Ni6RE9 (RE = La, Ce, Nd, Y) amorphous alloys[145]
Fig.6 Al-isoconcentration contours as a function of the selected concentration (as marked) in as-quenched Al86Ni9La5 (a-d) and (Al86Ni9La5)98Si2 (e-h) ribbons[147]
1
Greer A L. Metallic glasses [J]. Science, 1995, 267: 1947
2
Zeng Q S, Yin Z L, Lou H B. Polyamorphic transitions in metallic glasses [J]. Acta Metall. Sin., 2021, 57: 492
Wang W H, Dong C, Shek C H. Bulk metallic glasses [J]. Mater. Sci. Eng., 2004, R44: 45
4
Qiao J C, Wang Q, Pelletier J M, et al. Structural heterogeneities and mechanical behavior of amorphous alloys [J]. Prog. Mater. Sci., 2019, 104: 250
5
Predecki P, Giessen B C, Grant N J. New metastable alloy phases of gold, silver, and aluminum [J]. Trans. Metall. Soc. AIME, 1965, 233: 1438
6
Ramachandrarao P, Laridjani M, Cahn R W. Diamond as a splat-cooling substrate [J]. Int. J. Mater. Res., 1972, 63: 43
7
Davies H A, Hull J B. A non-crystalline phase in splat-quenched germanium [J]. Scr. Metall., 1973, 7: 637
8
Grant N J, Giessen B C. Proceedings of the Second International Conference on Rapidly Quenched Metals [M]. Cambridge, MA: MIT Press, 1975: 1
9
Sastry G V S, Suryanarayana C, Srivastava O N. Crystallization of an amorphous aluminum-palladium alloy [J]. Trans. Indian Inst. Met., 1978, 31: 292
10
Furrer P, Warlimont H. Crystalline and amorphous structures of rapidly solidified Al-Cr alloys [J]. Mater. Sci. Eng., 1977, 28: 127
11
Inoue A, Kitamura A, Masumoto T. The effect of aluminium on mechanical properties and thermal stability of (Fe, Co, Ni)-Al-B ternary amorphous alloys [J]. J. Mater. Sci., 1981, 16: 1895
12
Suzuki R O, Komatsu Y, Kobayashi K F, et al. Formation and crystallization of Al-Fe-Si amorphous alloys [J]. J. Mater. Sci., 1983, 18: 1195
13
Inoue A, Bizen Y, Kimura H M, et al. Development of compositional short-range ordering in an Al50Ge40Mn10 amorphous alloy upon annealing [J]. J. Mater. Sci. Lett., 1987, 6: 811
14
Inoue A, Yamamoto M, Kimura H M, et al. Ductile aluminium-base amorphous alloys with two separate phases [J]. J. Mater. Sci. Lett., 1987, 6: 194
15
Tsai A P, Inoue A, Masumoto T. Formation of metal-metal type aluminum-based amorphous alloys [J]. Metall. Trans., 1988, 19A: 1369
16
Tsai A P, Inoue A, Masumoto T. Ductile Al-Ni-Zr amorphous alloys with high mechanical strength [J]. J. Mater. Sci. Lett., 1988, 7: 805
17
Inoue A, Ohtera K, Masumoto T. New amorphous Al-Y, Al-La and Al-Ce alloys prepared by melt spinning [J]. Jpn. J. Appl. Phys., 1988, 27: L736
18
Inoue A, Zhang T, Kita K, et al. Mechanical strengths, thermal stability and electrical resistivity of aluminum-rare earth metal binary amorphous alloys [J]. Mater. Trans., JIM, 1989, 30: 870
19
Inoue A, Ohtera K, Zhang T, et al. New amorphous Al-Ln (Ln = Pr, Nd, Sm or Gd) alloys prepared by melt spinning [J]. Jpn. J. Appl. Phys., 1988, 27: L1583
20
Inoue A, Ohtera K, Tsai A P, et al. New amorphous alloys with good ductility in Al-Y-M and Al-La-M (M = Fe, Co, Ni or Cu) systems [J]. Jpn. J. Appl. Phys., 1988, 27: L280
21
Inoue A, Ohtera K, Kita K, et al. New amorphous alloys with good ductility in Al-Ce-M (M = Nb, Fe, Co, Ni or Cu) systems [J]. Jpn. J. Appl. Phys., 1988, 27: L1796
22
Wang S H, Yang C C, Bian X F. Developing aluminum-based amorphous alloys [J]. Mater. Rev., 2012, 26(1): 88
Yang B J, Yao J H, Zhang J, et al. Al-rich bulk metallic glasses with plasticity and ultrahigh specific strength [J]. Scr. Mater., 2009, 61: 423
24
He Y, Poon S J, Shiflet G J. Synthesis and properties of metallic glasses that contain aluminum [J]. Science, 1988, 241: 1640
25
Inoue A. Amorphous, nanoquasicrystalline and nanocrystalline alloys in Al-based systems [J]. Prog. Mater. Sci., 1998, 43: 365
26
Kim Y H, Inoue A, Masumoto T. Ultrahigh tensile strengths of Al88Y2Ni9M1 (M = Mn or Fe) amorphous alloys containing finely dispersed FCC-Al particles [J]. Mater. Trans., JIM, 1990, 31: 747
27
Inoue A, Kimura H. Fabrications and mechanical properties of bulk amorphous, nanocrystalline, nanoquasicrystalline alloys in aluminum-based system [J]. J. Light Met., 2001, 1: 31
28
Debenedetti P G, Stillinger F H. Supercooled liquids and the glass transition [J]. Nature, 2001, 410: 259
29
Bernal J D. A geometrical approach to the structure of liquids [J]. Nature, 1959, 183: 141
30
Bernal J D. Geometry of the structure of monatomic liquids [J]. Nature, 1960, 185: 68
31
Gaskell P H. New structural model for transition metal-metalloid glasses [J]. Nature, 1978, 276: 484
32
Gaskell P H. New structural model for amorphous transition metal silicides, borides, phosphides and carbides [J]. J. Non-Cryst. Solids, 1979, 32: 207
33
Nelson D R, Spaepen F. Polytetrahedral order in condensed matter [J]. Solid State Phys., 1989, 42: 1
34
Nelson D R. Order, frustration, and defects in liquids and glasses [J]. Phys. Rev., 1983, 28B: 5515
35
Senkov O N, Miracle D B. Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys [J]. Mater. Res. Bull., 2001, 36: 2183
36
Miracle D B, Sanders W S, Senkov O N. The influence of efficient atomic packing on the constitution of metallic glasses [J]. Philos. Mag., 2003, 83: 2409
37
Miracle D B, Senkov O N. A geometric model for atomic configurations in amorphous Al alloys [J]. J. Non-Cryst. Solids, 2003, 319: 174
38
Miracle D B. A structural model for metallic glasses [J]. Nat. Mater., 2004, 3: 697
39
Miracle D B. The efficient cluster packing model—An atomic structural model for metallic glasses [J]. Acta Mater., 2006, 54: 4317
40
Yi J J. Glass forming ability and crystallization behavior of Al-Ni-Re alloys [D]. Shanghai: Shanghai Jiao Tong University, 2016
乙姣姣. Al-Ni-RE合金的非晶形成能力与晶化行为 [D]. 上海: 上海交通大学, 2016
41
Matsubara E, Waseda Y, Inoue A, et al. Anomalous X-ray scattering on amorphous Al87Y8Ni5 and Al90Y10 alloys [J]. Z. Naturforsch., 1989, 44A: 814
42
Hsieh H Y, Egami T, He Y, et al. Short range ordering in amorphous Al90Fe x Ce10 - x [J]. J. Non-Cryst. Solids, 1991, 135: 248
43
Hsieh H Y, Toby B H, Egami T, et al. Atomic structure of amorphous Al90Fe x Ce10 - x [J]. J. Mater. Res., 1990, 5: 2807
44
Zhang L, Wu Y S, Bian X F, et al. Origin of the prepeak in the structure factors of liquid and amorphous Al-Fe-Ce alloys [J]. J. Phys. Condens. Matter, 1999, 11: 7959
45
Zhang L, Wu Y S, Bian X F, et al. Short-range and medium-range order in liquid and amorphous Al90Fe5Ce5 alloys [J]. J. Non-Cryst. Solids, 2000, 262: 169
46
Mansour A N, Wong C P, Brizzolara R A. Atomic structure of amorphous Al100 - 2x Co x Ce x (x = 8, 9, and 10) and Al80Fe10Ce10 alloys: An XAFS study [J]. Phys. Rev., 1994, 50B: 12401
47
Mansour A N, Marcelli A, Cibin G, et al. Amorphous Al90Fe x Ce10 - x alloys: X-ray absorption analysis of the Al, Fe and Ce local atomic and electronic structures [J]. Phys. Rev., 2002, 65B: 134207
48
Yang H, Wang J Q, Li Y. Influence of TM and RE elements on glass formation of the ternary Al-TM-RE systems [J]. J. Non-Cryst. Solids, 2008, 354: 3473
49
Saksl K, Jóvári P, Franz H, et al. Atomic structure of Al88Y7Fe5 metallic glass [J]. J. Appl. Phys., 2005, 97: 113507
50
Saksl K, Jóvári P, Franz H, et al. Atomic structure of Al89La6Ni5 metallic glass [J]. J. Phys.: Condens. Matter, 2006, 18: 7579
51
Bacewicz R, Antonowicz J. XAFS study of amorphous Al-RE alloys [J]. Scr. Mater., 2006, 54: 1187
52
Zalewski W, Antonowicz J, Bacewicz R, et al. Local atomic order in Al-based metallic glasses studied using XAFS method [J]. J. Alloys Compd., 2009, 468: 40
53
Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element [J]. Mater. Trans., 2005, 46: 2817
54
Egami T. The atomic structure of aluminum based metallic glasses and universal criterion for glass formation [J]. J. Non-Cryst. Solids, 1996, 205-207: 575
55
Xiong X Z, Yi J J, Kong L T, et al. The atomic packing structure of Al-(TM)-Y metallic glasses [J]. Intermetallics, 2019, 111: 106505
56
Xiong X Z. Glass forming ability and atomic packing structure of Al-based amorphous alloys [D]. Shanghai: Shanghai Jiao Tong University, 2019
熊贤仲. Al基非晶合金的玻璃形成能力与原子堆垛结构 [D]. 上海: 上海交通大学, 2019
57
Waseda Y. The Structure of Non-Crystalline Materials [M]. New York: McGraw-Hill, 1980: 1
58
Zhang F, Sun Y, Ye Z, et al. Solute-solute correlations responsible for the prepeak in structure factors of undercooled Al-rich liquids: A molecular dynamics study [J]. J. Phys. Condens. Matter, 2015, 27: 205701
59
Tang L, Yang Z J, Wen T Q, et al. Short- and medium-range orders in Al90Tb10 glass and their relation to the structures of competing crystalline phases [J]. Acta Mater., 2021, 204: 116513
60
Ahn K, Louca D, Poon S J, et al. Topological and chemical ordering induced by Ni and Nd in Al87Ni7Nd6 metallic glass [J]. Phys. Rev., 2004, 70B: 224103
61
Cheng Y Q, Ma E. Atomic-level structure and structure-property relationship in metallic glasses [J]. Prog. Mater. Sci., 2011, 56: 379
62
Jakse N, Lebacq O, Pasturel A. Ab initio molecular-dynamics simulations of short-range order in liquid Al80Mn20 and Al80Ni20 alloys [J]. Phys. Rev. Lett., 2004, 93: 207801
63
Yu C Y, Hui X D, Chen X H, et al. Ab initio molecular dynamics simulation of the atom packing and density of Al-Ni amorphous alloys [J]. Sci. China Technol. Sci., 2010, 53: 3175
64
Wang F R, Zhang H P, Li M Z. Correlation between structure and glass-forming ability in Al86Ni14 - x La x (x = 3, 5, 9) alloys: An ab initio molecular dynamics study [J]. J. Alloys Compd., 2018, 763: 392
65
Cheng Y Q, Ma E, Sheng H W. Atomic level structure in multicomponent bulk metallic glass [J]. Phys. Rev. Lett., 2009, 102: 245501
66
Sun Y, Zhang Y, Zhang F, et al. Cooling rate dependence of structural order in Al90Sm10 metallic glass [J]. J. Appl. Phys., 2016, 120: 015901
67
Sheng H W, Cheng Y Q, Lee P L, et al. Atomic packing in multicomponent aluminum-based metallic glasses [J]. Acta Mater., 2008, 56: 6264
68
Turnbull D. Under what conditions can a glass be formed? [J]. Contemp. Phys., 1969, 10: 473
69
Inoue A. High strength bulk amorphous alloys with low critical cooling rates (Overview) [J]. Mater. Trans., JIM, 1995, 36: 866
70
Lu Z P, Liu C T. Glass formation criterion for various glass-forming systems [J]. Phys. Rev. Lett., 2003, 91: 115505
71
Lu Z P, Liu C T. A new glass-forming ability criterion for bulk metallic glasses [J]. Acta Mater., 2002, 50: 3501
72
Ma C S, Zhang J, Hou W L, et al. Efficient atomic packing clusters and glass formation in ternary Al-based metallic glasses [J]. Philos. Mag. Lett., 2008, 88: 599
73
Yang B J, Yao J H, Chao Y S, et al. Developing aluminum-based bulk metallic glasses [J]. Philos. Mag., 2010, 90: 3215
74
Zhang Z, Xiong X Z, Zhou W, et al. Glass forming ability and crystallization behavior of Al-Ni-RE metallic glasses [J]. Intermetallics, 2013, 42: 23
75
Egami T, Waseda Y. Atomic size effect on the formability of metallic glasses [J]. J. Non-Cryst. Solids, 1984, 64: 113
76
Lisboa R D S, Bolfarini C, Botta F W J, et al. Topological instability as a criterion for design and selection of aluminum-based glass-former alloys [J]. Appl. Phys. Lett., 2005, 86: 211904
77
Ueno S, Waseda Y. Evaluation of the optimum solute concentration for good glass formability in multi-component alloys [J]. J. Mater. Eng., 1987, 9: 199
78
Waseda Y, Chen H S, Thomas Jacob K, et al. On the glass forming ability of liquid alloys [J]. Sci. Technol. Adv. Mater., 2008, 9: 023003
79
Zhang Z, Xiong X Z, Yi J J, et al. Crystallization behavior and thermal stability of Al-Ni-RE metallic glasses [J]. Acta Phys. Sin., 2013, 62: 136401
Nagel S R, Tauc J. Nearly-free-electron approach to the theory of metallic glass alloys [J]. Phys. Rev. Lett., 1975, 35: 380
81
Wu N C, Lian J B, Wang R, et al. Effect of element types on the glass forming ability of Al-TM-RE ternary metallic glasses using electron structure guiding [J]. J. Alloys Compd., 2017, 723: 123
82
Shen Y, Perepezko J H. Al-based amorphous alloys: Glass-forming ability, crystallization behavior and effects of minor alloying additions [J]. J. Alloys Compd., 2017, 707: 3
83
Wu R I, Wilde G, Perepezko J H. Glass formation and primary nanocrystallization in Al-base metallic glasses [J]. Mater. Sci. Eng., 2001, A301: 12
84
Zhang Z. Glass forming ability and crystallization behavior of Al-Ni-Re metallic glasses [D]. Shanghai: Shanghai Jiao Tong University, 2013
Li F, Liu X J, Hou H Y, et al. Structural origin underlying poor glass forming ability of Al metallic glass [J]. J. Appl. Phys., 2011, 110: 013519
86
Ashkenazy Y, Averback R S. Kinetic stages in the crystallization of deeply undercooled body-centered-cubic and face-centered-cubic metals [J]. Acta Mater., 2010, 58: 524
87
Yan Z Z, Sheng H, Ma E, et al. Intermediate structural evolution preceding growing BCC crystal interface in deeply undercooled monatomic metallic liquids [J]. Acta Mater., 2021, 202: 387
88
Louzguine-Luzgin D V, Miracle D B, Inoue A. Intrinsic and extrinsic factors influencing the glass-forming ability of alloys [J]. Adv. Eng. Mater., 2008, 10: 1008
89
Huang Z H. Formation and crystallization behaviors of Al-TM-RE based amorphous alloys [D]. Shanghai: Shanghai Jiao Tong University, 2008
Sanders W S, Warner J S, Miracle D B. Stability of Al-rich glasses in the Al-La-Ni system [J]. Intermetallics, 2006, 14: 348
91
Zhang Z, Xiong X Z, Yi J J, et al. Effects of substitution of La by other rare-earth elements on the glass forming ability of Al86Ni9La5 alloy [J]. J. Non-Cryst. Solids, 2013, 369: 1
92
Wu N C, Zuo L, Wang J Q, et al. Designing aluminum-rich bulk metallic glasses via electronic-structure-guided microalloying [J]. Acta Mater., 2016, 108: 143
93
Yang B J, Lu W Y, Zhang J L, et al. Melt fluxing to elevate the forming ability of Al-based bulk metallic glasses [J]. Sci. Rep., 2017, 7: 11053
94
Liu Y, Wang J, Qin J Y, et al. Influence of Ag substitution on the local structure and glass-forming ability of Al86Ni(8 - x)Y6Ag x (x = 0, 1, 2) liquids [J]. Phys. Chem. Liq., 2016, 54: 98
95
Audebert F, Galano M, Saporiti F. The use of Nb in rapid solidified Al alloys and composites [J]. J. Alloys Compd., 2014, 615 (): S621
96
Jun J H, Kim J M, Kim K T, et al. Glass formability and thermal stability of Al-Ni-Y-Be amorphous alloys [J]. J. Alloys Compd., 2007, 434-435: 190
97
Chen S F, Chen J K, Lin S L, et al. Effects of B upon glass forming ability of Al87Y8Ni5 amorphous alloy [J]. J. Alloys Compd., 2013, 565: 29
98
Wang J Q, Liu Y H, Imhoff S, et al. Enhance the thermal stability and glass forming ability of Al-based metallic glass by Ca minor-alloying [J]. Intermetallics, 2012, 29: 35
99
Sha P F, Qi Z, Zhang Z H. Effect of Ag or Pd additions on the microstructure, crystallization and thermal stability of Al-Ni-Ce amorphous alloys [J]. Intermetallics, 2010, 18: 1699
100
Yi J J, Xiong X Z, Inoue A, et al. Glass forming ability of Al-Ni-La alloys with Si addition [J]. J. Alloys Compd., 2015, 650: 578
101
Zhong Z C, Jiang X Y, Greer A L. Micro structure and hardening of Al-based nanophase composites [J]. Mater. Sci. Eng., 1997, A226-228: 531
102
Holland-Moritz D. Short-range order and solid-liquid interfaces in undercooled metallic melts [J]. Mater. Sci. Eng., 2001, A304-306: 108
103
Güntherodt H J, Beck H. Glassy Metals I: Ionic Structure, Electronic Transport, and Crystallization [M]. New York: Springer-Verlag, 1981: 1
104
Allen D R, Foley J C, Perepezko J H. Nanocrystal development during primary crystallization of amorphous alloys [J]. Acta Mater., 1998, 46: 431
105
Blank-Bewersdorff M. Crystallization behaviour of Al86Ni10Zr4 and Al86Fe10Zr4 metallic glasses [J]. J. Mater. Sci. Lett., 1991, 10: 1225
106
Nakazato K, Kawamura Y, Tsai A P, et al. On the growth of nanocrystalline grains in an aluminum-based amorphous alloy [J]. Appl. Phys. Lett., 1993, 63: 2644
107
Inoue A, Nakazato K, Kawamura Y, et al. Effect of Cu or Ag on the formation of coexistent nanoscale Al particles in Al-Ni-M-Ce (M = Cu or Ag) amorphous alloys [J]. Mater. Trans., JIM, 1994, 35: 95
108
Foley J C, Allen D R, Perepezko J H. Analysis of nanocrystal development in Al-Y-Fe and Al-Sm glasses [J]. Scr. Mater., 1996, 35: 655
109
Tsai A P, Kamiyama T, Kawamura Y, et al. Formation and precipitation mechanism of nanoscale Al particles in Al-Ni base amorphous alloys [J]. Acta Mater., 1997, 45: 1477
110
Wilde G, Sieber H, Perepezko J H. Glass formation versus nanocrystallization in an Al92Sm8 alloy [J]. Scr. Mater., 1999, 40: 779
111
Perepezko J H, Hebert R J, Tong W S. Amorphization and nanostructure synthesis in Al alloys [J]. Intermetallics, 2002, 10: 1079
112
Perepezko J H, Hebert R J, Tong W S, et al. Nanocrystallization reactions in amorphous aluminum alloys [J]. Mater. Trans., 2003, 44: 1982
113
Perepezko J H, Hebert R J, Wu R I, et al. Primary crystallization in amorphous Al-based alloys [J]. J. Non-Cryst. Solids, 2003, 317: 52
114
Perepezko J H. Nucleation-controlled reactions and metastable structures [J]. Prog. Mater. Sci., 2004, 49: 263
115
Stratton W G, Hamann J, Perepezko J H, et al. Aluminum nanoscale order in amorphous Al92Sm8 measured by fluctuation electron microscopy [J]. Appl. Phys. Lett., 2005, 86: 141910
116
Lay M D H, Hill A J, Saksida P G, et al. 27Al NMR measurement of fcc Al configurations in as-quenched Al85Ni11Y4 metallic glass and crystallization kinetics of Al nanocrystals [J]. Acta Mater., 2012, 60: 79
117
Spowart J E, Miracle D B, Mullens H M. The influence of solute distribution on the high nucleation density of Al crystals in amorphous aluminum alloys [J]. J. Non-Cryst. Solids, 2004, 336: 202
118
Gangopadhyay A K, Croat T K, Kelton K F. The effect of phase separation on subsequent crystallization in Al88Gd6La2Ni4 [J]. Acta Mater., 2000, 48: 4035
119
Antonowicz J, Yavari A R, Vaughan G. Nanocrystallization of Al92Sm8 amorphous alloy studied in situ by real-time X-ray diffraction [J]. Nanotechnology, 2004, 15: 1038
120
Antonowicz J. Phase separation and nanocrystal formation in Al-based metallic glasses [J]. J. Alloys Compd., 2007, 434-435: 126
121
Antonowicz J. Atomic packing and phase separation in Al-rare earth metallic glasses [J]. J. Mater. Sci., 2010, 45: 5040
122
Antonowicz J, Jezierska E, Kêdzierski M, et al. Early stages of phase separation and nanocrystallization in Al-rare earth metallic glasses studied using SAXS/WAXS and HRTEM methods [J]. Rev. Adv. Mater. Sci., 2008, 18: 454
123
Antonowicz J, Yavari A R, Botta W J, et al. Phase separation and nanocrystallization in Al92Sm8 metallic glass [J]. Philos. Mag., 2006, 86: 4235
124
Antonowicz J, Kędzierski M, Jezierska E, et al. Small-angle X-ray scattering from phase-separating amorphous metallic alloys undergoing nanocrystallization [J]. J. Alloys Compd., 2009, 483: 116
125
Wang Y B, Yang H W, Sun B B, et al. Evidence of phase separation correlated with nanocrystallization in Al85Ni5Y6Fe2Co2 metallic glass [J]. Scr. Mater., 2006, 55: 469
126
Radiguet B, Blavette D, Wanderka N, et al. Segregation-controlled nanocrystallization in an Al-Ni-La metallic glass [J]. Appl. Phys. Lett., 2008, 92: 103126
127
Sahu K K, Mauro N A, Longstreth-Spoor L, et al. Phase separation mediated devitrification of Al88Y7Fe5 glasses [J]. Acta Mater., 2010, 58: 4199
128
Tian N, Ohnuma M, Ohkubo T, et al. Primary crystallization of an Al88Gd6Er2Ni4 metallic glass [J]. Mater. Trans., 2005, 46: 2880
129
Hume-Rothery W, Anderson E. Eutectic compositions and liquid immiscibility in certain binary alloys [J]. Philos. Mag., 1960, 5: 383
130
Sommer F. Association model for the description of thermodynamic functions of liquid alloys: II. Numerical treatment and results [J]. Int. J. Mater. Res., 1982, 73: 77
131
Bokeloh J, Boucharat N, Rösner H, et al. Primary crystallization in Al-rich metallic glasses at unusually low temperatures [J]. Acta Mater., 2010, 58: 3919
132
Huang Z H, Li J F, Rao Q L, et al. Effects of replacing Ni by Co on the crystallization behaviors of Al-Ni-La amorphous alloys [J]. Intermetallics, 2008, 16: 727
133
Huang Z H, Li J F, Rao Q L, et al. Thermal stability and primary phase of Al-Ni(Cu)-La amorphous alloys [J]. J. Alloys Compd., 2008, 463: 328
134
Cuevas F G, Lozano-Perez S, Aranda R M, et al. Crystallisation of amorphous Al-Y-Ni-(Cu) alloys [J]. J. Non-Cryst. Solids, 2019, 512: 15
135
Cuevas F G, Lozano-Perez S, Aranda R M, et al. Crystallisation of amorphous Al-Sm-Ni-(Cu) alloys [J]. Intermetallics, 2019, 112: 106537
136
Mansouri M, Varahram N, Simchi A. Effect of copper on the thermal stability and non-isothermal crystallization behavior of Al86Ni10 - x Cu x RE4 (x = 0.5-2.5) amorphous alloys prepared by melt spinning [J]. J. Non-Cryst. Solids, 2019, 506: 46
137
Cuevas F G, Lozano-Perez S, Aranda R M, et al. Crystallization process and microstructural evolution of melt spun Al-RE-Ni-(Cu) ribbons [J]. Metals, 2020, 10: 443
138
Zhang Y, Warren P J, Cerezo A. Effect of Cu addition on nanocrystallisation of Al-Ni-Sm amorphous alloy [J]. Mater. Sci. Eng., 2002, A327: 109
139
Hong S J, Warren P J, Chun B S. Nanocrystallization behaviour of Al-Y-Ni with Cu additions [J]. Mater. Sci. Eng., 2001, A304-306: 362
140
Inoue A, Ohtera K, Tsai A P, et al. Aluminum-based amorphous alloys with tensile strength above 980 MPa (100 kg/mm2) [J]. Jpn. J. Appl. Phys., 1988, 27: L479
141
Chang I T H, Svec P, Gogebakan M, et al. Rapidly solidified Al85Ni15 - x Y x (x = 5, 8, 10) alloys [J]. Mater. Sci. Forum, 1996, 225-227: 335
142
Huang Z H, Li J F, Rao Q L, et al. Dependences of the crystallization behavior of Al-Ni-La amorphous alloys on La and Ni contents [J]. J. Non-Cryst. Solids, 2008, 354: 1671
143
Louzguine D V, Inoue A. Full or partial replacement of Y by rare-earth and some other elements in the Al85Y8Ni5Co2 alloy [J]. J. Light Met., 2001, 1: 105
144
Louzguine-Luzgin D V, Inoue A. Structure and transformation behaviour of a rapidly solidified Al-Y-Ni-Co-Pd alloy [J]. J. Alloys Compd., 2005, 399: 78
145
Huang Z H, Li J F, Rao Q L, et al. Primary crystallization of Al-Ni-RE amorphous alloys with different type and content of RE [J]. Mater. Sci. Eng., 2008, A489: 380
146
Yi J J, Xu W Q, Xiong X Z, et al. Glass-forming ability and crystallization behavior of Al86Ni9La5 metallic glass with Si addition [J]. Adv. Eng. Mater., 2016, 18: 972
147
Yi J J, Kong L T, Ferry M, et al. Origin of the separated α-Al nanocrystallization with Si added to Al86Ni9La5 amorphous alloy [J]. Mater. Charact., 2021, 178: 111199
148
Li W, Yang L, Zhang Y G, et al. Influences of Si addition on the thermal stability and crystallization behavior of Al-Y binary amorphous alloys [J]. J. Alloys Compd., 2021, 873: 159816
149
Li W, Kong L T, Li J F. The alloying effects of Ge and Si on thermal stability and crystallization behavior of Al-Y binary amorphous alloys [J]. J. Non-Cryst. Solids, 2022, 575: 121197
150
Guan P F, Sun S J. Atomic-level study in the structure and its instability of metallic glasses [J]. Acta Metall. Sin., 2021, 57: 501