|
|
|
| Research Progress of Titanium Alloys and Their Diffusion Bonding Fatigue Characteristics |
LI Xifeng, LI Tianle, AN Dayong, WU Huiping, CHEN Jieshi, CHEN Jun( ) |
| Institute of Forming Technology & Equipment, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200030, China |
|
Cite this article:
LI Xifeng, LI Tianle, AN Dayong, WU Huiping, CHEN Jieshi, CHEN Jun. Research Progress of Titanium Alloys and Their Diffusion Bonding Fatigue Characteristics. Acta Metall Sin, 2022, 58(4): 473-485.
|
|
|
Abstract This paper concentrates on the research progress of titanium alloys and their diffusion bonding fatigue characteristics, and summarizes the laws of fatigue crack initiation and growth of titanium alloys with/without welding. The chemical composition, classification, and common welding method of titanium alloys are stated, with emphasis on the features and advantages of diffusion bonding. The phenomena of slip band formation and dislocation movement under cyclic loading are described, and the mechanism of fatigue crack initiation is clarified. The selection of microstructures is a common method to optimize mechanical properties of titanium alloys. Previous studies suggested that the laminated structure is an important mode to realize the low fatigue crack growth rate of titanium alloys. Improper parameters of the welding process can cause joint defects, and further heat treatment can reduce joint defects while improving the fatigue life and strength. Finally, the multilayer and heterogeneous laminates of titanium alloys produced by diffusion bonding are briefly described to realize the possibility of high damage tolerance.
|
|
Received: 13 December 2021
|
|
|
| Fund: National Natural Science Foundation of China(51875350);National Natural Science Foundation of China(52105383) |
About author: CHEN Jun, professor, Tel: (021)62813432, E-mail: jun_chen@sjtu.edu.cn
|
| 1 |
Banerjee D, Williams J C. Perspectives on titanium science and technology [J]. Acta Mater., 2013, 61: 844
|
| 2 |
Yumak N, Aslantaş K. A review on heat treatment efficiency in metastable β titanium alloys: The role of treatment process and parameters [J]. J. Mater. Res. Technol., 2020, 9: 15360
|
| 3 |
Gao P F, Fu M W, Zhan M, et al. Deformation behavior and microstructure evolution of titanium alloys with lamellar microstructure in hot working process: A review [J]. J. Mater. Sci. Technol., 2020, 39: 56
|
| 4 |
Guo L G, Fan X G, Yu G F, et al. Microstructure control techniques in primary hot working of titanium alloy bars: A review [J]. Chin. J. Aeronaut., 2016, 29: 30
|
| 5 |
Gangwar K, Ramulu M. Friction stir welding of titanium alloys: A review [J]. Mater. Des., 2018, 141: 230
|
| 6 |
Schijve J. Fatigue damage in aircraft structures, not wanted, but tolerated? [J]. Int. J. Fatigue, 2009, 31: 998
|
| 7 |
Qian B Y, Li L, Sun J F, et al. Effects of annealing on the microstructures and mechanical properties of cold-rolled TB8 alloy [J]. J. Mater. Eng. Perform., 2019, 28: 2816
|
| 8 |
Mantri S A, Choudhuri D, Behera A, et al. Influence of fine-scale alpha precipitation on the mechanical properties of the beta titanium alloy beta-21S [J]. Metall. Mater. Trans., 2015, 46A: 2803
|
| 9 |
Tan C S, Li X L, Sun Q Y, et al. Effect of α-phase morphology on low-cycle fatigue behavior of TC21 alloy [J]. Int. J. Fatigue, 2015, 75: 1
|
| 10 |
Editorial Board of China Aeronautical Materials Handbook. China Aeronautical Materials Handbook. Volume IV Titanium Alloys and Copper Alloys [M]. 2nd Ed., Beijing: Standards Press of China, 2002: 5
|
|
《中国航空材料手册》编辑委员会. 中国航空材料手册-第四卷-钛合金 铜合金 [M]. 第2版, 北京: 中国标准出版社, 2002: 5
|
| 11 |
Zhu Z S. Research and development of new-brand titanium alloys of high performance for aeronautical applications [M]. Beijing: Aviation industry press, 2013: 77
|
|
朱知寿. 新型航空高性能钛合金材料技术研究与发展 [M].北京: 航空工业出版社, 2013: 77
|
| 12 |
Li J S, Tang B, Fan J K, et al. Deformation mechanism and microstructure control of high strength metastable β titanium alloy [J]. Acta Metall. Sin., 2021, 57: 1438
|
|
李金山, 唐 斌, 樊江昆 等. 高强亚稳β钛合金变形机制及其组织调控方法 [J]. 金属学报, 2021, 57: 1438
|
| 13 |
Yang R, Ma Y J, Lei J F, et al. Toughening high strength titanium alloys through fine tuning phase composition and refining microstructure [J]. Acta Metall. Sin., 2021, 57: 1455
|
|
杨 锐, 马英杰, 雷家峰 等. 高强韧钛合金组成相成分和形态的精细调控 [J]. 金属学报, 2021, 57: 1455
|
| 14 |
Zhu Z S, Ma S J, Wang X N, et al. Study of fatigue crack propagation rate of TC4-DT damage tolerance titanium alloy [J]. Titan. Ind. Progr., 2005, 22(6): 10
|
|
朱知寿, 马少俊, 王新南 等. TC4-DT损伤容限型钛合金疲劳裂纹扩展特性的研究 [J]. 钛工业进展, 2005, 22(6): 10
|
| 15 |
Mantri S A, Choudhuri D, Alam T, et al. Tuning the scale of α precipitates in β-titanium alloys for achieving high strength [J]. Scr. Mater., 2018, 154: 139
|
| 16 |
Wang G Q. Study of thermomechanical process and electron beam welding properties of titanium alloy Ti-6246 [D]. Shenyang: University of Science and Technology of China, 2016
|
|
王国强. Ti-6246钛合金热机械处理及电子束焊接性研究 [D]. 沈阳: 中国科学技术大学, 2016
|
| 17 |
Zhu F H, Chen C J, Li X F, et al. Role of thermal cycle in joining Ti-6Al-4V and Ti2AlNb-based alloys through diffusion bonding and post heat treatment [J]. Mater. Charact., 2019, 156: 109830
|
| 18 |
Akman E, Demir A, Canel T, et al. Laser welding of Ti6Al4V titanium alloys [J]. J. Mater. Process. Technol., 2009, 209: 3705
|
| 19 |
Mohandas T, Banerjee D, Kutumbarao V V. Elevated temperature properties of electron beam welds of an α + β titanium alloy [J]. Mater. Sci. Eng., 1999, A269: 217
|
| 20 |
Fratini L, Micari F, Buffa G, et al. A new fixture for FSW processes of titanium alloys [J]. CIRP Ann., 2010, 59: 271
|
| 21 |
Kovacevic S, Pan R, Sekulic D P, et al. Interfacial energy as the driving force for diffusion bonding of ceramics [J]. Acta Mater., 2020, 186: 405
|
| 22 |
Wu H P, Yang W B, Peng H L, et al. Diffusion bonding criterion based on real surface asperities: Modeling and validation [J]. J. Manuf. Processes, 2020, 57: 477
|
| 23 |
Li X F, Chen X, Li B Y, et al. Grain refinement mechanism of Ti-55 titanium alloy by hydrogenation and dehydrogenation treatment [J]. Mater. Charact., 2019, 157: 109919
|
| 24 |
Zhu F H, Peng H L, Li X F, et al. Dissimilar diffusion bonding behavior of hydrogenated Ti2AlNb-based and Ti-6Al-4V alloys [J]. Mater. Des., 2018, 159: 68
|
| 25 |
Li X, Wang G F, Zhang J X, et al. Electrically assisted superplastic forming/diffusion bonding of the Ti2AlNb alloy sheet [J]. Int. J. Adv. Manuf. Technol., 2020, 106: 77
|
| 26 |
Li X, Wang G F, Gu Y B, et al. Investigation on electrically-assisted diffusion bonding of Ti2AlNb alloy sheet by microstructural observation, mechanical tests and heat treatment [J]. Mater. Des., 2018, 157: 351
|
| 27 |
Feng R, Rao Y, Liu C H, et al. Enhancing fatigue life by ductile-transformable multicomponent B2 precipitates in a high-entropy alloy [J]. Nat. Commun., 2021, 12: 3588
|
| 28 |
Cao Y K, Zeng F P, Liu B, et al. Characterization of fatigue properties of powder metallurgy titanium alloy [J]. Mater. Sci. Eng., 2016, A654: 418
|
| 29 |
Li X Z. Research on the microstructure and fatigue property of electron beam welding joint in titanium alloy [D] Wuhan: Huazhong University of Science and Technology, 2012
|
|
李行志. 钛合金电子束焊接接头显微组织及疲劳性能研究 [D]. 武汉: 华中科技大学, 2012
|
| 30 |
Bettaieb M B, Lenain A, Habraken A M. Static and fatigue characterization of the Ti5553 titanium alloy [J]. Fatigue Fract. Eng. Mater. Struct., 2013, 36: 401
|
| 31 |
Gilbert J L, Piehler H R. On the nature and crystallographic orientation of subsurface cracks in high cycle fatigue of Ti-6Al-4V [J]. Metall. Mater. Trans., 1993, 24A: 669
|
| 32 |
Ivanova S G, Biederman R R, Sisson R D Jr. Investigation of fatigue crack initiation in Ti-6Al-4V during tensile-tensile fatigue [J]. J. Mater. Eng. Perform., 2002, 11: 226
|
| 33 |
Oberwinkler B, Lettner A, Eichlseder W. Multiscale fatigue crack observations on Ti-6Al-4V [J]. Int. J. Fatigue, 2011, 33: 710
|
| 34 |
Meng L, Gao J B, Yue J K, et al. Stress-based fatigue behavior of Ti-6Al-4V alloy with a discontinuous lamellar microstructure fabricated by thermomechanical powder consolidation [J]. Mater. Sci. Eng., 2020, A798: 140085
|
| 35 |
Man J, Petrenec M, Obrtlík K, et al. AFM and TEM study of cyclic slip localization in fatigued ferritic X10CrAl24 stainless steel [J]. Acta Mater., 2004, 52: 5551
|
| 36 |
Polák J, Man J. Experimental evidence and physical models of fatigue crack initiation [J]. Int. J. Fatigue, 2016, 91: 294
|
| 37 |
Lam Y C, Lian K S. The effect of residual stress and its redistribution of fatigue crack growth [J]. Theor. Appl. Fract. Mech., 1989, 12: 59
|
| 38 |
Paris P C, Gomez M P, Anderson W E. A rational analytic theory of fatigue [J]. Trends Eng., 1961, 13: 9
|
| 39 |
Forman R G, Kearney V E, Engle R M. Numerical analysis of crack propagation in cyclic-loaded structures [J]. J. Fluids Eng., 1967, 89: 459
|
| 40 |
Walker K. The effect of stress ratio during crack propagation and fatigue for 2024-T3 and 7075-T6 aluminum [J]. Eff. Environ. Complex Load Hist. Fatigue Life, 1970, 462: 1
|
| 41 |
Wang H, Zhao Q Y, Xin S W, et al. Fatigue crack propagation behaviors in Ti-5Al-3Mo-3V-2Zr-2Cr-1Nb-1Fe alloy with STA and BASCA heat treatments [J]. Int. J. Fatigue, 2021, 151: 106348
|
| 42 |
Guo P, Zhao Y Q, Zeng W D, et al. Effect of microstructure on the fatigue crack propagation behavior of TC4-DT titanium alloy [J]. J. Mater. Eng. Perform., 2015, 24: 1865
|
| 43 |
Shi X H, Zeng W D, Shi C L, et al. The effects of colony microstructure on the fatigue crack growth behavior for Ti-6A1-2Zr-2Sn-3Mo-1Cr-2Nb titanium alloy [J]. Mater. Sci. Eng., 2015, A621: 252
|
| 44 |
Yue Y, Dai L Y, Zhong H, et al. Effect of microstructure on high cycle fatigue behavior of Ti-20Zr-6.5Al-4V alloy [J]. J. Alloys Compd., 2017, 696: 663
|
| 45 |
Mine Y, Katashima S, Ding R G, et al. Fatigue crack growth behaviour in single-colony lamellar structure of Ti-6Al-4V [J]. Scr. Mater., 2019, 165: 107
|
| 46 |
Bantounas I, Lindley T C, Rugg D, et al. Effect of microtexture on fatigue cracking in Ti-6Al-4V [J]. Acta Mater., 2007, 55: 5655
|
| 47 |
Ren J Q, Wang Q, Zhang B B, et al. Influence of microstructure on fatigue crack growth behavior of Ti-6Al-3Nb-2Zr-1Mo alloy: Bimodal vs. lamellar structures [J]. Intermetallics, 2021, 130: 107058
|
| 48 |
Shi X H, Zeng W D, Shi C L, et al. Study on the fatigue crack growth rates of Ti-5Al-5Mo-5V-1Cr-1Fe titanium alloy with basket-weave microstructure [J]. Mater. Sci. Eng., 2015, A621: 143
|
| 49 |
Tokaji K, Ogawa T, Ohya K. The effect of grain size on small fatigue crack growth in pure titanium [J]. Int. J. Fatigue, 1994, 16: 571
|
| 50 |
Verdhan N, Bhende D D, Kapoor R, et al. Effect of microstructure on the fatigue crack growth behaviour of a near-α Ti alloy [J]. Int. J. Fatigue, 2015, 74: 46
|
| 51 |
Hassanipour M, Watanabe S, Hirayama K, et al. Effects of 3D microstructural distribution on short crack growth behavior in two bimodal Ti-6Al-4V alloys [J]. Mater. Sci. Eng., 2019, A766: 138264
|
| 52 |
Mine Y, Ando S, Takashima K. Crystallographic fatigue crack growth in titanium single crystals [J]. Mater. Sci. Eng., 2011, A528: 7570
|
| 53 |
Zhang K, Wu X, Davies C H J. Effect of microtexture on short crack propagation in two-phase titanium alloys [J]. Int. J. Fatigue, 2017, 104: 206
|
| 54 |
Wang X Y, Zhao Y, Wang L B, et al. In-situ SEM investigation and modeling of small crack growth behavior of additively manufactured titanium alloy [J]. Int. J. Fatigue, 2021, 149: 106303
|
| 55 |
Shi X H. Investigation on the damage tolerace property and high cycle fatigue strength of TC18 titanium alloy with basket-weave microstructure [D]. Xi'an: Northwestern Polytechnical University, 2016
|
|
石晓辉. 网篮组织TC18钛合金损伤容限性能及高周疲劳强度研究 [D]. 西安: 西北工业大学, 2016
|
| 56 |
Clegg W J, Kendall K, Alford N M, et al. A simple way to make tough ceramics [J]. Nature, 1990, 347: 455
|
| 57 |
Wu H, Fan G H, Huang M, et al. Deformation behavior of brittle/ductile multilayered composites under interface constraint effect [J]. Int. J. Plast., 2017, 89: 96
|
| 58 |
Huang Y, Zhang H W. The role of metal plasticity and interfacial strength in the cracking of metal/ceramic laminates [J]. Acta Metall. Mater., 1995, 43: 1523
|
| 59 |
Liu B X, Huang L J, Rong X D, et al. Bending behaviors and fracture characteristics of laminated ductile-tough composites under different modes [J]. Compos. Sci. Technol., 2016, 126: 94
|
| 60 |
Dong Y H, He X F, Li Y H. Effect of interface region on fatigue crack growth in diffusion-bonded laminate of Ti-6Al-4V [J]. Int. J. Fatigue, 2018, 117: 63
|
| 61 |
He X F, Dong Y H, Li Y H, et al. Fatigue crack growth in diffusion-bonded Ti-6Al-4V laminate with unbonded zones [J]. Int. J. Fatigue, 2018, 106: 1
|
| 62 |
Liu Y, Zhang Y C, Liu S T, et al. Effect of unbonded areas around hole on the fatigue crack growth life of diffusion bonded titanium alloy laminates [J]. Eng. Fract. Mech., 2016, 163: 176
|
| 63 |
Junet A, Messager A, Boulnat X, et al. Fabrication of artificial defects to study internal fatigue crack propagation in metals [J]. Scr. Mater., 2019, 171: 87
|
| 64 |
Adharapurapu R R, Vecchio K S, Jiang F C, et al. Effects of ductile laminate thickness, volume fraction, and orientation on fatigue-crack propagation in Ti-Al3Ti metal-intermetallic laminate composites [J]. Metall. Mater. Trans., 2005, 36A: 1595
|
| 65 |
Liao K H, Su C Y, Yu M Y. Interfacial microstructure and mechanical properties of diffusion-bonded W-10 Cu composite/AlN ceramic using Ni-P and Ti interlayers [J]. J. Alloys Compd., 2021, 867: 159050
|
| 66 |
Eskizeybek V, Avci A, Akdemir A, et al. Fatigue behavior and damage assessment of stainless steel/aluminum composites [J]. J. Eng. Mater. Technol. Trans., 2011, 133: 021016
|
| 67 |
Li P, Ji X H, Xue K M. Diffusion bonding of TA15 and Ti2AlNb alloys: Interfacial microstructure and mechanical properties [J]. J. Mater. Eng. Perform., 2017, 26: 1839
|
| 68 |
Zhong Z H, Hinoki T, Nozawa T, et al. Microstructure and mechanical properties of diffusion bonded joints between tungsten and F82H steel using a titanium interlayer [J]. J. Alloys Compd., 2010, 489: 545
|
| 69 |
Wang X F, Ma M, Liu X B, et al. Interface characteristics in diffusion bonding of a γ-TiAl alloy to Ti-6Al-4V [J]. J. Mater. Sci., 2007, 42: 4004
|
| 70 |
Sun L X, Li M Q, Li L. Characterization of crystal structure in the bonding interface between TC17 and TC4 alloys [J]. Mater. Charact., 2019, 153: 169
|
| 71 |
Zhu F H. Study on diffusion bonding mechanism and nondestructive testing method of interface defects of dissimilar titanium based alloys [D]. Shanghai: Shanghai Jiao Tong University, 2020
|
|
朱富慧. 异种钛基合金扩散连接机理及界面缺陷无损检测方法研究 [D]. 上海: 上海交通大学, 2020
|
| 72 |
Jia G P. Study on sperplastic deformation behavior of Ti2AlNb alloy [D]. Shanghai: Shanghai Jiao Tong University, 2019
|
|
贾国朋. Ti2AlNb基合金超塑变形行为研究 [D]. 上海: 上海交通大学, 2019
|
| 73 |
Li T L, Wu H P, Wang B, et al. Fatigue crack growth behavior of TA15/TC4 dissimilar laminates fabricated by diffusion bonding [J]. Int. J. Fatigue, 2021, 156: 106646
|
| 74 |
Du Z H, Jiang S S, Zhang K F, et al. The structural design and superplastic forming/diffusion bonding of Ti2AlNb based alloy for four-layer structure [J]. Mater. Des., 2016, 104: 242
|
| 75 |
Du Z H, Zhang K F. The superplastic forming/diffusion bonding and mechanical property of TA15 alloy for four‐layer hollow structure with squad grid [J]. Int. J. Mater. Form., 2021, 14: 1057
|
| 76 |
Du Z H, Zhang K F. The hot bending and diffusion bonding of TiAl-based alloy for corrugated-core sandwich structure [J]. J. Mater. Eng. Perform., 2019, 28: 1986
|
| 77 |
Xu F F. Study on diffusion bonding process and interface testing method of multilayer stainless steel diaphragm structure [D]. Shanghai: Shanghai Jiao Tong University, 2021
|
|
徐芳菲. 多层不锈钢膜盒结构扩散连接工艺与界面检测方法研究 [D]. 上海: 上海交通大学, 2021
|
| 78 |
Sanders D G, Ramulu M, Edwards P D, et al. Effects on the surface texture, superplastic forming, and fatigue performance of titanium 6Al-4V friction stir welds [J]. J. Mater. Eng. Perform., 2010, 19: 503
|
| 79 |
Edwards P, Ramulu M. Fatigue performance of friction stir welded titanium structural joints [J]. Int. J. Fatigue, 2015, 70: 171
|
| 80 |
Edwards P, Ramulu M. Fatigue performance of friction stir welded Ti-6Al-4V subjected to various post weld heat treatment temperatures [J]. Int. J. Fatigue, 2015, 75: 19
|
| 81 |
Nakai M, Niinomi M, Komine K, et al. High-cycle fatigue properties of an easily hot-workable (α + β)-type titanium alloy butt joint prepared by friction stir welding below β transus temperature [J]. Mater. Sci. Eng., 2019, A742: 553
|
| 82 |
Xie P Y, Liu X G, Guo H D, et al. Study on diffusion bonding and joint fatigue property of titanium alloy [A]. The 8th Academic Conference Proceedings on Aircraft Engine Reliability of Chinese Society of Aeronautics and Astronautics [C]. Beijing: Chinese Society of Aeronautics and Astronautics, 2015: 721
|
|
谢佩玉, 刘小刚, 郭海丁 等. 钛合金扩散焊连接及接头疲劳性能研究 [A]. 中国航空学会第八届航空发动机可靠性学术交流会论文集 [C]. 北京: 中国航空学会, 2015: 721
|
| 83 |
Tuppen S J, Bache M R, Voice W E. A fatigue assessment of dissimilar titanium alloy diffusion bonds [J]. Int. J. Fatigue, 2005, 27: 651
|
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|