Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (4): 385-399    DOI: 10.11900/0412.1961.2021.00519
Overview Current Issue | Archive | Adv Search |
Grain Refinement of As-Cast Mg-RE Alloys: Research Progress and Future Prospect
WU Guohua1,2, TONG Xin1(), JIANG Rui1, DING Wenjiang1,2
1.National Engineering Research Center of Light Alloys Net Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2.State Key Laboratory of Metal Matrix Composite, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Cite this article: 

WU Guohua, TONG Xin, JIANG Rui, DING Wenjiang. Grain Refinement of As-Cast Mg-RE Alloys: Research Progress and Future Prospect. Acta Metall Sin, 2022, 58(4): 385-399.

Download:  HTML  PDF(2405KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Magnesium rare-earth (Mg-RE) alloy castings with a large size and complex structure exhibit versatile prospects in critical aircraft, aerospace, and defense fields owing to their ultralow density, excellent specific strength, and high-temperature resistance. The grain refinement of cast Mg-RE alloys can significantly improve their strength, plasticity, toughness, and casting performance, which are critical for expanding their applications. In this work, the grain refinement mechanism of Mg alloys by introducing RE elements and heterogeneous particles is first discussed based on the classical theory of constitutional supercooling and heterogeneous nucleation. Various grain refinement technologies for Mg-RE alloy casting using chemical and physical methods are comprehensively summarized. Further, the influence of grain refinement on the casting performance, mechanical properties, and corrosion properties of Mg-RE cast alloys is thoroughly discussed. Finally, the deficiencies and development trends of the current grain refinement of Mg-RE alloys are discussed from the point of actual application requirements.

Key words:  Mg-RE alloy      grain refinement      theoretical model      solidification microstructure      property     
Received:  30 November 2021     
ZTFLH:  TG146.2  
Fund: National Natural Science Foundation of China(U2037601);National Natural Science Foundation of China(51821001);National Natural Science Foundation of China(51775334);Research Program of Joint Research Center of Advanced Spaceflight Technologies(USCAST-2020-31)
About author:  TONG Xin, Tel: 19916947517, E-mail: xintong@sjtu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00519     OR     https://www.ams.org.cn/EN/Y2022/V58/I4/385

Elementm / (oC·%-1)kQ / oC
Nd-3.55703.557
Sm-3.40.1352.943
Pr-2.90902.909
La-2.89502.895
Yb-3.0980.1332.685
Eu-2.4902.49
Tb-2.990.3062.073
Ce-1.72501.725
Y-1.62401.624
Gd-2.5950.6051.025
Ho-2.1960.6080.86
Dy-2.3490.6470.828
Tm-1.580.6470.557
Er-2.1570.7570.524
Lu-0.680.820.123
Table 1  Slope of the liquidus (m), solute partition coefficient (k), and growth restriction factor(Q) of RE elements in Mg alloys (concentration of solute element Ci = 1.0%, mass fraction)[21]
Fig.1  Dependence of grain size of Mg alloys on the Q of the RE elements[22]
(a) measured curves(b) fitted curve of all data
Fig.2  Possible orientation relationships between Al2Y particles and α-Mg matrix calculated by edge to edge model (E2EM) (a)[26] and the relation between atom spacing mismatches and interface energy of Al2RE particles and α-Mg (b)[27] (γNS—interfacial energy between nucleant and solid Mg, γNL—interfacial energy between nucleant and liquid Mg, γSL—interfacial energy between solid Mg and liquid Mg, θc—contact angle at the interface between nucleant and solid Mg, γc—the difference between γNL and γNS)
Fig.3  Microstructure of the Zr halo in Mg alloy containing Zr (a)[22], changes of grain size (d) and eutectic phase's volume fraction (fV) with Zr content in the Mg-10Gd-3Y-xZr alloy (b)[36]
Fig.4  Microstructures of Mg-10Y alloy grain-refined by Al (a, b) and Zr (c, d)[26]
(a, c) as-cast state (b, d) solution treated at 550oC for 48 h
(e) Al-Y phase observed in the cast Mg-10Y-Al alloy
Fig.5  Microstructures of the Al2Y particle and its orientation relationship with α-Mg matrix[27]
(a) SEM image (b) cross section of the Al2Y
(c) TEM image showing the Al2Y/Mg interface with the selected area electron diffraction (SAED) pattern
(d) HRTEM image of Al2Y/Mg interface close to F1 facet in Fig.5c
Fig.6  SEM image of MgO particles in Mg melt with intensive melt shearing (a)[59] and HRTEM image of Zr adsorption layer at MgO/Mg interface (b)[60]
Fig.7  Average grain sizes of Mg-5Sm-xAl alloy with and without ultrasonic treatment (UT) (a), contribution rate of grain refinement (CRGR) by Al2Sm particles and UT (b)
Fig.8  OM images (a, b) and macro-photographs showing the effect of grain size on the hot tearing susceptibility (c, d) of Mg-4.5Zn-0.4Y (a, c) and Mg-4.5Zn-0.4Y-0.2Zr (b, d)[12]
1 Yang Y, Xiong X M, Chen J, et al. Research advances in magnesium and magnesium alloys world wide in 2020 [J]. J. Magnes. Alloy., 2021, 9: 705
2 Wu G H, Wang C L, Sun M, et al. Recent developments and applications on high-performance cast magnesium rare-earth alloys [J]. J. Magnes. Alloy., 2021, 9: 1
3 Xie J S, Zhang J H, You Z H, et al. Towards developing Mg alloys with simultaneously improved strength and corrosion resistance via RE alloying [J]. J. Magnes. Alloy., 2021, 9: 41
4 Peng Q M, Dong H W, Wang L D, et al. Microstructure and mechanical property of Mg-8.31Gd-1.12Dy-0.38Zr alloy [J]. Mater. Sci. Eng., 2008, A477: 193
5 Gao L, Chen R S, Han E H. Microstructure and strengthening mechanisms of a cast Mg-1.48Gd-1.13Y-0.16Zr (at.%) alloy [J]. J. Mater. Sci., 2009, 44: 4443
6 He S M, Zeng X Q, Peng L M, et al. Microstructure and strengthening mechanism of high strength Mg-10Gd-2Y-0.5Zr alloy [J]. J. Alloys Compd., 2007, 427: 316
7 Rong W, Wu Y J, Zhang Y, et al. Characterization and strengthening effects of γ′ precipitates in a high-strength casting Mg-15Gd-1Zn-0.4Zr (wt. %) alloy [J]. Mater. Charact., 2017, 126: 1
8 Zhang Y, Wu Y J, Peng L M, et al. Microstructure evolution and mechanical properties of an ultra-high strength casting Mg-15.6Gd-1.8Ag-0.4Zr alloy [J]. J. Alloys Compd., 2014, 615: 703
9 Yamada K, Hoshikawa H, Maki S, et al. Enhanced age-hardening and formation of plate precipitates in Mg-Gd-Ag alloys [J]. Scr. Mater., 2009, 61: 636
10 Tong X, Wu G H, Zhang L, et al. Microstructure and mechanical properties of repair welds of low-pressure sand-cast Mg-Y-RE-Zr alloy by tungsten inert gas welding [J]. J. Magnes. Alloy., 2020, 10: 180
11 Tong X, Zhang G Q, Wu G H, et al. Addressing the abnormal grain coarsening during post-weld heat treatment of TIG repair welded joint of sand-cast Mg-Y-RE-Zr alloy [J]. Mater. Charact., 2021, 176: 111125
12 Song J F, Pan F S, Jiang B, et al. A review on hot tearing of magnesium alloys [J]. J. Magnes. Alloy., 2016, 4: 151
13 Song J F, Wang Z, Huang Y D, et al. Effect of Zn addition on hot tearing behaviour of Mg-0. 5Ca-xZn alloys [J]. Mater. Des., 2015, 87: 157
14 Tong X, You G Q, Ding Y H, et al. Effect of grain size on low-temperature electrical resistivity and thermal conductivity of pure magnesium [J]. Mater. Lett., 2018, 229: 261
15 Johnsson M, Backerud L, Sigworth G K. Study of the mechanism of grain refinement of aluminum after additions of Ti-and B-containing master alloys [J]. Metall. Mater. Trans., 1993, 24A: 481
16 Greer A L, Bunn A M, Tronche A, et al. Modelling of inoculation of metallic melts: Application to grain refinement of aluminium by Al-Ti-B [J]. Acta Mater., 2000, 48: 2823
17 StJohn D H, Qian M, Easton M A, et al. The interdependence theory: The relationship between grain formation and nucleant selection [J]. Acta Mater., 2011, 59: 4907
18 Bramfitt B L. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron [J]. Metall. Mater. Trans., 1970, 1B: 1987
19 Zhang M X, Kelly P M, Easton M A, et al. Crystallographic study of grain refinement in aluminum alloys using the edge-to-edge matching model [J]. Acta Mater., 2005, 53: 1427
20 Easton M A, StJohn D H. A model of grain refinement incorporating alloy constitution and potency of heterogeneous nucleant particles [J]. Acta Mater., 2001, 49: 1867
21 Ali Y, Qiu D, Jiang B, et al. Current research progress in grain refinement of cast magnesium alloys: A review article [J]. J. Alloys Compd., 2015, 619: 639
22 Sun M. Study on grain refinement behavior of Mg-Gd-Y magnesium alloy by zirconium [D]. Shanghai: Shanghai Jiao Tong University, 2012
孙 明. Mg-Gd-Y镁合金Zr晶粒细化行为研究 [D]. 上海: 上海交通大学, 2012
23 Turnbull D, Vonnegut B. Nucleation catalysis [J]. Ind. Eng. Chem., 1952, 44: 1292
24 Yuan G Y, Liu Z L, Wang Q D, et al. Microstructure refinement of Mg-Al-Zn-Si alloys [J]. Mater. Lett., 2002, 56: 53
25 Lu L, Dahle A K, StJohn D H. Grain refinement efficiency and mechanism of aluminium carbide in Mg-Al alloys [J]. Scr. Mater., 2005, 53: 517
26 Qiu D, Zhang M X, Taylor J A, et al. A new approach to designing a grain refiner for Mg casting alloys and its use in Mg-Y-based alloys [J]. Acta Mater., 2009, 57: 3052
27 Qiu D, Zhang M X. The nucleation crystallography and wettability of Mg grains on active Al2Y inoculants in an Mg-10wt% Y Alloy [J]. J. Alloys Compd., 2014, 586: 39
28 Qian M. Heterogeneous nucleation on potent spherical substrates during solidification [J]. Acta Mater., 2007, 55: 943
29 Sun M, Easton M A, Stjohn D H, et al. Grain refinement of magnesium alloys by Mg-Zr master alloys: The role of alloy chemistry and Zr particle number density [J]. Adv. Eng. Mater., 2013, 15: 373
30 Qiu D, Zhang M X. Effect of active heterogeneous nucleation particles on the grain refining efficiency in an Mg-10wt.%Y cast alloy [J]. J. Alloys Compd., 2009, 488: 260
31 StJohn D H, Easton M A, Qian M, et al. Grain refinement of magnesium alloys: A review of recent research, theoretical developments, and their application [J]. Metall. Mater. Trans., 2013, 44A: 2935
32 StJohn D H, Ma Q, Easton M A, et al. Grain refinement of magnesium alloys [J]. Metall. Mater. Trans., 2005, 36A: 1669
33 Qian M, Das A. Grain refinement of magnesium alloys by zirconium: Formation of equiaxed grains [J]. Scr. Mater., 2006, 54: 881
34 Zhang D Y, Qiu D, Zhu S M, et al. Grain refinement in laser remelted Mg-3Nd-1Gd-0.5Zr alloy [J]. Scr. Mater., 2020, 183: 12
35 Emley E F. Principles of Magnesium Technology [M]. Oxford: Pergamon Press, 1966: 126
36 Pang S. Study on solidification behavior and grain refining mechanism of sand-cast Mg-Gd-Y alloys [D]. Shanghai: Shanghai Jiao Tong University, 2015
庞 松. 砂型铸造Mg-Gd-Y合金凝固行为与晶粒细化机制研究 [D]. 上海: 上海交通大学, 2015
37 Tian Q. Grain refining mechanism and influncing factors of Mg-RE-Zr alloys [D]. Harbin: Harbin Institute of Technology, 2011
田 倩. Mg-RE-Zr合金的细化机理及影响因素的研究 [D]. 哈尔滨: 哈尔滨工业大学, 2011
38 Qian M, StJohn D H. Grain nucleation and formation in Mg-Zr alloys [J]. Int. J. Cast Met. Res., 2009, 22: 256
39 Sun M, Wu G H, Wang W, et al. Effect of Zr on the microstructure, mechanical properties and corrosion resistance of Mg-10Gd-3Y magnesium alloy [J]. Mater. Sci. Eng., 2009, A523: 145
40 Qian M, Zheng L, Graham D, et al. Settling of undissolved zirconium particles in pure magnesium melts [J]. J. Light Met., 2001, 1: 157
41 Qian M, Hildebrand Z C G, StJohn D H. The loss of dissolved zirconium in zirconium-refined magnesium alloys after remelting [J]. Metall. Mater. Trans., 2009, 40A: 2470
42 Qian M, StJohn D H, Frost M T, et al. Grain refinement of pure magnesium using rolled Zirmax master alloy (Mg-33.3Zr) [J]. Magnes. Technol., 2003, 2003: 215
43 Wang C Q, Sun M, Zheng F Y, et al. Improvement in grain refinement efficiency of Mg-Zr master alloy for magnesium alloy by friction stir processing [J]. J. Magnes. Alloy., 2014, 2: 239
44 Viswanathan S, Saha P, Foley D, et al. Engineering a more efficient zirconium grain refiner for magnesium [A]. Magnesium Technology 2011 [M]. Cham: Springer, 2011: 559
45 Sun M, Wu G H, Dai J C, et al. Grain refinement behavior of potassium fluozirconate (K2ZrF6) salts mixture introduced into Mg-10Gd-3Y magnesium alloy [J]. J. Alloys Compd., 2010, 494: 426
46 Tong X, Wu G H, Zhang L, et al. Achieving low-temperature Zr alloying for microstructural refinement of sand-cast Mg-Gd-Y alloy by employing zirconium tetrachloride [J]. Mater. Charact., 2020, 171: 110727
47 Tong X, You G Q, Wang Y C, et al. Effect of ultrasonic treatment on segregation and mechanical properties of as-cast Mg-Gd binary alloys [J]. Mater. Sci. Eng., 2018, A731: 44
48 Wu G H, Tong X, Sui H M, et al. Research status and prospect of melt treatment of magnesium-rare earth alloy [J]. Foundry, 2021, 70: 1
吴国华, 童 鑫, 眭怀明 等. 镁稀土合金熔体处理研究现状与展望 [J]. 铸造, 2021, 70: 1
49 Dai J C, Easton M A, Zhang M X, et al. Effects of cooling rate and solute content on the grain refinement of Mg-Gd-Y alloys by aluminum [J]. Metall. Mater. Trans., 2014, 45A: 4665
50 Wang C L, Dai J C, Liu W C, et al. Effect of Al additions on grain refinement and mechanical properties of Mg-Sm alloys [J]. J. Alloys Compd., 2015, 620: 172
51 Jiang Z T, Jiang B, Zeng Y, et al. Role of Al modification on the microstructure and mechanical properties of as-cast Mg-6Ce alloys [J]. Mater. Sci. Eng., 2015, A645: 57
52 Chang H W, Qiu D, Taylor J A, et al. The role of Al2Y in grain refinement in Mg-Al-Y alloy system [J]. J. Magnes. Alloy., 2013, 1: 115
53 Dai J C. Study on the effects of Al and trace elements on grain refinement behavior, microstructure and mechanical properties of Mg-Gd(-Y) alloys [D]. Shanghai: Shanghai Jiao Tong University, 2014
戴吉春. Al及微量元素对Mg-Gd(-Y)合金晶粒细化行为、组织及力学性能影响的研究 [D]. 上海: 上海交通大学, 2014
54 Jiang Z T, Meng X, Jiang B, et al. Grain refinement of Mg-3Y alloy using Mg-10Al2Y master alloy [J]. J. Rare Earths, 2021, 39: 881
55 Tong X, You G Q, Luo J C, et al. Rapid cooling effect during solidification on macro- and micro-segregation of as-cast Mg-Gd alloy [J]. Prog. Nat. Sci., 2021, 31: 68
56 Tong X, You G Q, Yao F J, et al. Segregation behavior and its regulating process in as-cast magnesium alloy containing heavy rare earth [J]. J. Rare Earths, doi: 10.1016/j.jre.2021.08.009
57 Izumi S, Yamasaki M, Kawamura Y. Relation between corrosion behavior and microstructure of Mg-Zn-Y alloys prepared by rapid solidification at various cooling rates [J]. Corros. Sci., 2009, 51: 395
58 Fan Z, Wang Y, Xia M, et al. Enhanced heterogeneous nucleation in AZ91D alloy by intensive melt shearing [J]. Acta Mater., 2009, 57: 4891
59 Peng G S, Wang Y, Fan Z. Competitive heterogeneous nucleation between Zr and MgO particles in commercial purity magnesium [J]. Metall. Mater. Trans., 2018, 49A: 2182
60 Peng G S, Wang Y, Chen K H, et al. Improved Zr grain refining efficiency for commercial purity Mg via intensive melt shearing [J]. Int. J. Cast Met. Res., 2017, 30: 374
61 Chen X R, Jia Y H, Le Q C, et al. The interaction between in situ grain refiner and ultrasonic treatment and its influence on the mechanical properties of Mg-Sm-Al magnesium alloy [J]. J. Mater. Res. Technol., 2020, 9: 9262
62 Zhang L, Li Y L. Research progress on grain refining methods of magnesium alloy [J]. Foundry, 2019, 68: 1195
张 玲, 李英龙. 镁合金晶粒细化方法研究进展 [J]. 铸造, 2019, 68: 1195
63 Nagasivamuni B, Wang G, StJohn D H, et al. Effect of ultrasonic treatment on the alloying and grain refinement efficiency of a Mg-Zr master alloy added to magnesium at hypo- and hyper-peritectic compositions [J]. J. Cryst. Growth, 2019, 512: 20
64 Atamanenko T V, Eskin D G, Zhang L, et al. Criteria of grain refinement induced by ultrasonic melt treatment of aluminum alloys containing Zr and Ti [J]. Metall. Mater. Trans., 2010, 41A: 2056
65 Wang G, Wang Q, Easton M A, et al. Role of ultrasonic treatment, inoculation and solute in the grain refinement of commercial purity aluminium [J]. Sci. Rep., 2017, 7: 9729
66 Wu G H, Chen Y S, Ding W J. Current research and future prospect on microstructures controlling of high performance magnesium alloys during solidification [J]. Acta Metall. Sin., 2018, 54: 637
吴国华, 陈玉狮, 丁文江. 高性能镁合金凝固组织控制研究现状与展望 [J]. 金属学报, 2018, 54: 637
67 Qiu Y F, Gao D M, Chen L, et al. Effects of pulsed electric current on solidification structure and mechanical properties of AZ91 magnesium alloy [J]. Spec. Cast. Nonferrous Alloys, 2007, 27: 633
丘永福, 高德民, 陈 磊 等. 脉冲电流对AZ91镁合金凝固组织和力学性能的影响 [J]. 特种铸造及有色合金, 2007, 27: 633
68 Lan J, Yang Y, Li X. Microstructure and microhardness of SiC nanoparticles reinforced magnesium composites fabricated by ultrasonic method [J]. Mater. Sci. Eng., 2004, A386: 284
69 Zi B T, Ba Q X, Cui J Z, et al. Effect of strong pulsed electromagnetic field on metal's solidified structure [J]. Aсtа Phys. Sin., 2000, 49: 1010
訾炳涛, 巴启先, 崔建忠 等. 强脉冲电磁场对金属凝固组织影响的研究 [J]. 物理学报, 2000, 49: 1010
70 Sterzel R, Dahlmann E, Langsdorf A, et al. Preparation of Zn-Mg-rare earth quasicrystals and related crystalline phases [J]. Mater. Sci. Eng., 2000, A294-296: 124
71 Misra A K. A novel solidification technique of metals and alloys: Under the influence of applied potential [J]. Metall. Trans., 1985, 16A: 1354
72 Wang B, Yang Y S, Zhou J X, et al. Effect of the pulsed magnetic field on the solidification and mechanical properties of Mg-Gd-Y-Zr alloy [J]. Rare Met. Mater. Eng., 2009, 38: 519
汪 彬, 杨院生, 周吉学 等. 脉冲磁场对Mg-Gd-Y-Zr合金凝固及力学性能的影响 [J]. 稀有金属材料与工程, 2009, 38: 519
73 Zhang L, Zhou W, Hu P H, et al. Microstructural characteristics and mechanical properties of Mg-Zn-Y alloy containing icosahedral quasicrystals phase treated by pulsed magnetic field [J]. J. Alloys Compd., 2016, 688: 868
74 Chang Z Y, Wu Y J, Heng X W, et al. Characterization of microstructure and nanoscale phase in Mg-15Gd-1Zn (wt.%) alloy fabricated by rotating magnetic field casting [J]. Mater. Charact., 2020, 170: 110660
75 Hu S P, Chen L P, Zhou Q, et al. Research progress in effects of physical fields on solidified structure of metals [J]. Spec. Cast. Nonferrous Alloys, 2018, 38: 717
胡世平, 陈乐平, 周 全 等. 物理场对金属凝固组织影响的研究进展 [J]. 特种铸造及有色合金, 2018, 38: 717
76 Wang L, Wang N, Provatas N. Liquid channel segregation and morphology and their relation with hot cracking susceptibility during columnar growth in binary alloys [J]. Acta Mater., 2017, 126: 302
77 Sistaninia M, Terzi S, Phillion A B, et al. 3-D granular modeling and in situ X-ray tomographic imaging: A comparative study of hot tearing formation and semi-solid deformation in Al-Cu alloys [J]. Acta Mater., 2013, 61: 3831
78 Huang Y G. Study on the fluidity and hot tearing behavior of Mg-Gd-Y-Zr alloys [D]. Shanghai: Shanghai Jiao Tong University, 2009
黄玉光. Mg-Gd-Y-Zr合金的热裂和流动性研究 [D]. 上海: 上海交通大学, 2009
79 Kamga K H, Larouche D, Bournane M, et al. Hot tearing of aluminum-copper B206 alloys with iron and silicon additions [J]. Mater. Sci. Eng., 2010, A527: 7413
80 Lin S, Aliravci C, Pekguleryuz M O. Hot-tear susceptibility of aluminum wrought alloys and the effect of grain refining [J]. Metall. Mater. Trans., 2007, 38A: 1056
81 Liu J W, Kou S. Crack susceptibility of binary aluminum alloys during solidification [J]. Acta Mater., 2016, 110: 84
82 Hatami N, Babaei R, Dadashzadeh M, et al. Modeling of hot tearing formation during solidification [J]. J. Mater. Process. Technol., 2008, 205: 506
83 Li J l, Chen R S, Ma Y Q, et al. Characterization and prediction of microporosity defect in sand cast WE54 alloy castings [J]. J. Mater. Sci. Technol., 2014, 30: 991
84 Yin H, Liu Z L, Liu X Q, et al. Effects of Al addition on the microstructure and mechanical properties of Mg-4Y alloys [J]. Mater. Sci. Technol., 2017, 33: 2188
85 Dai J C, Zhu S M, Easton M A, et al. Heat treatment, microstructure and mechanical properties of a Mg-Gd-Y alloy grain-refined by Al additions [J]. Mater. Sci. Eng., 2013, A576: 298
86 Gao L, Chen R S, Han E H. Effects of rare-earth elements Gd and Y on the solid solution strengthening of Mg alloys [J]. J. Alloys Compd., 2009, 481: 379
87 Li Y L, Wu G H, Chen A T, et al. Effects of Gd and Zr additions on the microstructures and high-temperature mechanical behavior of Mg-Gd-Y-Zr magnesium alloys in the product form of a large structural casting [J]. J. Mater. Res., 2015, 30: 3461
88 Ralston K D, Birbilis N, Davies C H J. Revealing the relationship between grain size and corrosion rate of metals [J]. Scr. Mater., 2010, 63: 1201
89 Song G L, StJohn D. The effect of zirconium grain refinement on the corrosion behaviour of magnesium-rare earth alloy MEZ [J]. J. Light Met., 2002, 2: 1
90 Zhang L L, Zhang J S, Zhao R, et al. Effect of microalloyed Al on microstructure and corrosion behaviors of as-cast Mg-Zn-Y-Mn alloys [J]. Adv. Eng. Mater., 2021, 23: 2000587
91 Wang L S, Jiang J H, Yuan T, et al. Recent progress on corrosion behavior and mechanism of Mg-RE based alloys with long period stacking ordered structure [J]. Met. Mater. Int., 2020, 26: 551
92 Wang L S, Jiang J H, Liu H, et al. Microstructure characterization and corrosion behavior of Mg-Y-Zn alloys with different long period stacking ordered structures [J]. J. Magnes. Alloy., 2020, 8: 1208
93 Cao F Y, Zheng D J, Song G L, et al. The corrosion behavior of Mg5Y in nominally distilled water [J]. Adv. Eng. Mater., 2018, 20: 1700986
94 Qian M, StJohn D H, Frost M T. Effect of soluble and insoluble zirconium on the grain refinement of magnesium alloys [J]. Mater. Sci. Forum, 2003, 419-422: 593
95 Ben-Hamu G, Eliezer D, Shin K S, et al. The relation between microstructure and corrosion behavior of Mg-Y-RE-Zr alloys [J]. J. Alloys Compd., 2007, 431: 269
[1] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[6] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[10] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[11] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[12] LIANG Kai, YAO Zhihao, XIE Xishan, YAO Kaijun, DONG Jianxin. Correlation Between Microstructure and Properties of New Heat-Resistant Alloy SP2215[J]. 金属学报, 2023, 59(6): 797-811.
[13] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[14] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[15] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
No Suggested Reading articles found!