Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (4): 400-411    DOI: 10.11900/0412.1961.2021.00520
Overview Current Issue | Archive | Adv Search |
Recent Progress on Thermal Conductivity of Magnesium and Its Alloys
ZENG Xiaoqin(), WANG Jie, YING Tao, DING Wenjiang
School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Cite this article: 

ZENG Xiaoqin, WANG Jie, YING Tao, DING Wenjiang. Recent Progress on Thermal Conductivity of Magnesium and Its Alloys. Acta Metall Sin, 2022, 58(4): 400-411.

Download:  HTML  PDF(1917KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

This article reviews recent progress on the thermal conductivity of magnesium and its alloys. First, lattice distortion induced by solute atoms negatively impacts the thermal conductivity of Mg alloys, which is correlated to three properties of solute atoms: atomic radius, chemical valency, and extra-nuclear electrons. Second, the formation of intermetallic compounds, which is accompanied by the creation of new phase interfaces that act as barriers to the movement of electrons, negatively impacts the thermal conductivity of Mg alloys. This negative effect is correlated to the morphology, size, distribution, and content of secondary phases. Thermal conductivity along the transverse or normal direction is superior to that along the extrusion or rolling direction for wrought Mg alloys with basal texture. Further, temperature significantly influences the thermal conductivity of Mg alloys; however, the underlying mechanisms vary depending on the temperature range and should be discussed separately. These aspects of research on Mg alloys with high thermal conductivity are still necessary in the future: quantifying the relationship between microstructure and thermal conductivity; thermal behavior of multicomponent Mg alloys and the establishment of its thermal conductivity model; compositional design and microstructural control of high thermal conductivity Mg alloys; physical nature of thermal behavior in Mg alloys.

Key words:  magnesium alloy      thermal conductivity      electrical resistivity      solute atom      heat treatment     
Received:  30 November 2021     
ZTFLH:  TB31  
Fund: National Key Research and Development Program of China(2021YFB3701101);National Key Research and Development Program of China(2020YFB1505901)
About author:  ZENG Xiaoqin, professor, Tel: (021)54742301, E-mail: xqzeng@sjtu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00520     OR     https://www.ams.org.cn/EN/Y2022/V58/I4/400

Fig.1  Effect of alloying elements on the thermal conductivity of Mg alloy[14]
Fig.2  Thermal resistivity (100 / λ) (a, c) and electrical resistivity (b, d) of the six groups of Mg alloys[18]
Fig.3  The thermal conductivity of solution-treated Mg-RE alloys[14]
(a) alloying elements in the form of solute atoms(b) alloying elements in the form of second phases
Fig.4  Thermal diffusivity (a) and thermal conductivity (b) of Mg-Nd alloys in as-cast, solution-treated (T4) and aging conditions (T6)[25]
Fig.5  Anisotropy of thermal conductivity in the as-extruded Mg-Al alloys (ED—extrusion direction)[40]
Fig.6  Temperature dependence of the thermal conductivity of as-cast Mg-Al binary alloys[43]
Fig.7  Thermal conductivity of Mg-Zn (a), Mg-Al (b), and Mg-Mn (c) alloys and pure Mg with increasing temperature[17]
AlloyProcessing conditionThermalMechanical property
(mass fraction / %)conductivity
YSUTSEl
W·m-1·K-1
MPaMPa%
Pure Mg[1]157.3
Mg-4Zn-1Mn[30]As-cast118.1---
T4 (643 K, 12 h)127.6---
T6 (643 K, 12 h + 423 K, 10 h)130.4---
Mg-6Zn[18]As-cast114.3---
T4 (633 K, 48 h)108.7---
T6 (633 K, 48 h + 433 K, 60 h)115.972--
Mg-6Zn-1Cu[18]As-cast121.3
T6 (703 K, 48 h + 433 K, 60 h)128.994--
Mg-5Zn-1Mn[52]As-cast98.3
T4 (643 K, 12 h) + extruded at 623 K (16 ∶ 1)106.017729119.3
T4 (643 K, 12 h) + extruded at 623 K (16 ∶ 1) +26832114.8
T6 (448 K, 36 h)
T4 (643 K, 12 h) + extruded at 623 K (16 ∶ 1 ) +31034712.5
T6 (673 K, 1.5 h + 448 K, 20 h)
Mg-3Al-1Zn[53]As-extruded96.4---
Mg-9Al-1Zn[54]As-cast51.2---
Extruded + T4 (688 K, 5 h)47.3---
As-extruded46.9---
Extruded + T6 (688 K, 5 h + 473 K, 8 h)47.9---
Mg-0.1Mn[55]T4 (773 K, 24 h) + extruded at 623 K142.1---
Mg-0.5Mn[55]T4 (773 K, 24 h) + extruded at 623 K132.2---
Mg-1.5Mn[55]T4 (773 K, 24 h) + extruded at 623 K124.7---
Mg-4Y-2Zn[56]As-cast82.8---
Mg-12Gd[55]T6 (798 K, 24 h + 498 K, 24 h)56.998.5--
Mg-2Gd-2Nd-2Y-As-cast55.01111838.1
1Ho-1Er-0.5Zn-0.4Zr[57]T4 (793 K, l6 h)44.113220810.3
T6 (793 K, 16 h + 473 K, 82 h)52.52153065.7
Table 1  Thermal conductivity and mechanical properties of conventional alloys[1,18,30,52-57]
1 Ding W J. Science and Technology of Magnesium Alloy [M]. Beijing: Science Press, 2007: 1
丁文江. 镁合金科学与技术 [M]. 北京: 科学出版社, 2007: 1
2 Touloukian Y S, Powell R W, Ho C Y, et al. Thermal Conductivity: Metallic Elements and Alloys [M]. New York: IFI/Plenum, 1970: 1
3 Mordike B L, Ebert T. Magnesium: Properties-applications-potential [J]. Mater. Sci. Eng, 2001, A302: 37
4 Kaviany M, Kanury A M. Principles of heat transfer [J]. Appl. Mech. Rev., 2002, 55: B100
5 Caro M, Béland L K, Samolyuk G D, et al. Lattice thermal conductivity of multi-component alloys [J]. J. Alloys Compd., 2015, 648: 408
6 Huang L, Liu S H, Du Y, et al. Thermal conductivity of the Mg-Al-Zn alloys: Experimental measurement and CALPHAD modeling [J]. Calphad, 2018, 62: 99
7 Chen Y J, Zhang P, Wang R Z. Thermal conductivity measurements of solid materials at low temperatures [J]. Cryog. Supercond., 2010, 38(6): 1
陈艳婕, 张 鹏, 王如竹. 固体材料低温热导率的测量 [J]. 低温与超导, 2010, 38(6): 1
8 Shahil K M F, Balandin A A. Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials [J]. Solid State Commun., 2012, 152: 1331
9 Sun W C, Wu G L. Test method for basic thermophysical properties of metals and insulating materials [J]. Chin. Space Sci. Technol., 1982, 2(1): 55
孙文超, 吴观乐. 金属和绝缘材料基本热物理性能测试方法 [J]. 中国空间科学技术, 1982, 2(1): 55
10 Li K W, Liu Y W, Zhang J, et al. Thermal conductivity of graphene and its testing methods [J]. Chem. Bull., 2017, 80: 603
李坤威, 刘亚伟, 张 剑 等. 石墨烯导热性能及其测试方法 [J]. 化学通报, 2017, 80: 603
11 Wang C M, Chen Y G, Xiao S F. Situation of research and development of thermal conductive magnesium alloys [J]. Rare Met. Mater. Eng., 2015, 44: 2596
王春明, 陈云贵, 肖素芬. 导热镁合金的研究与开发现状 [J]. 稀有金属材料与工程, 2015, 44: 2596
12 Rzychoń T, Kiełbus A. The Influence of rare earth, strontium and calcium on the thermal diffusivity of Mg-Al alloys [J]. Defect. Diffus. Forum, 2011, 312-315: 824
13 Rudajevová A, Kiehn J, Kainer K U, et al. Thermal diffusivity of short-fibre reinforced Mg-Al-Zn-Mn alloy [J]. Scr. Mater., 1998, 40: 57
14 Su C Y, Li D J, Luo A A, et al. Effect of solute atoms and second phases on the thermal conductivity of Mg-RE alloys: A quantitative study [J]. J. Alloys Compd., 2018, 747: 431
15 Zhong L P, Peng J, Sun S, et al. Microstructure and thermal conductivity of as-cast and as-solutionized Mg-rare earth binary alloys [J]. J. Mater. Sci. Technol., 2017, 33: 1240
16 Pan H C, Pan F S, Yang R M, et al. Thermal and electrical conductivity of binary magnesium alloys [J]. J. Mater. Sci., 2014, 49: 3107
17 Ying T, Chi H, Zheng M Y, et al. Low-temperature electrical resistivity and thermal conductivity of binary magnesium alloys [J]. Acta Mater., 2014, 80: 288
18 Pan H C. Investigations on thermal conductivity of magnesium alloys [D]. Chongqing: Chongqing University, 2013
潘虎成. 镁合金导热性能的研究 [D]. 重庆: 重庆大学, 2013
19 Zhong L P, Wang Y J, Gong M, et al. Effects of precipitates and its interface on thermal conductivity of Mg-12Gd alloy during aging treatment [J]. Mater. Charact., 2018, 138: 284
20 Su C Y. Thermal mechanism of magnesium alloys based on solute atom and second phase [D]. Shanghai: Shanghai Jiao Tong University, 2019
苏创业. 基于固溶原子和第二相的镁合金导热机制研究 [D]. 上海: 上海交通大学, 2019
21 Dai X T, Ma M L, Zhang K, et al. Effect of Ce on microstructure and thermal conductivity of as-cast Mg-6Zn alloy [J]. J. Mater. Eng., 2020, 48(1): 92
代晓腾, 马鸣龙, 张 奎 等. Ce对铸态Mg-6Zn合金组织与导热性能的影响 [J]. 材料工程, 2020, 48(1): 92
22 Eivani A R, Ahmed H, Zhou J, et al. Correlation between electrical resistivity, particle dissolution, precipitation of dispersoids, and recrystallization behavior of AA7020 aluminum alloy [J]. Metall. Mater. Trans., 2009, 40A: 2435
23 Pan H C, Pan F S, Wang X, et al. Correlation on the electrical and thermal conductivity for binary Mg-Al and Mg-Zn alloys [J]. Int. J. Thermophys., 2013, 34: 1336
24 Dai X T, Ma M L, Li Y J, et al. Effect of heat treatment on microstructure and thermal conductivity of Mg-6Zn-xCe alloy [J]. Chin. J. Nonferrrous Met., 2021, 31: 639
代晓腾, 马鸣龙, 李永军 等. 热处理对Mg-6Zn-xCe合金组织与导热性能的影响 [J]. 中国有色金属学报, 2021, 31: 639
25 Su C Y, Li D J, Ying T, et al. Effect of Nd content and heat treatment on the thermal conductivity of Mg-Nd alloys [J]. J. Alloys Compd., 2016, 685: 114
26 Choi S W, Cho H S, Kumai S. Effect of the precipitation of secondary phases on the thermal diffusivity and thermal conductivity of Al-4.5Cu alloy [J]. J. Alloys Compd., 2016, 688: 897
27 Zhao J, Li J M, Zhao L M, et al. Thermal conductivity and electrical conductivity of Cu-37.67Zn-1.43A1 alloy with high pressure heat treatment [J]. Chin. J. Rare Met., 2015, 39: 97
赵 军, 李冀蒙, 赵陆民 等. 高压热处理对Cu-37.67Zn-1.43Al合金导热及导电性能的影响 [J]. 稀有金属, 2015, 39: 97
28 Wang C M, Liu H M, Chen Y G, et al. Effect of precipitates on thermal conductivity of aged Mg-5Sn alloy [J]. Philos. Mag., 2017, 97: 1698
29 Yuan J W, Zhang K, Zhang X H, et al. Thermal characteristics of Mg-Zn-Mn alloys with high specific strength and high thermal conductivity [J]. J. Alloys Compd., 2013, 578: 32
30 Yuan J W, Li T, Li X G, et al. Homogenizing heat treatment and thermal conductivity of Mg-4Zn-1Mn magnesium alloy [J]. Trans. Mater. Heat Treat., 2012, 33(4): 27
袁家伟, 李 婷, 李兴刚 等. Mg-4Zn-1Mn镁合金均匀化热处理及导热率 [J]. 材料热处理学报, 2012, 33(4): 27
31 Wang C M, Cui Z M, Liu H M, et al. Electrical and thermal conductivity in Mg-5Sn alloy at different aging status [J]. Mater. Des., 2015, 84: 48
32 Page M A M, Weidenfeller B, Hartmann S. Influence of temperature and aging on the thermal diffusivity, thermal conductivity and heat capacity of a zinc die casting alloy [J]. J. Alloys Compd., 2019, 786: 1060
33 Lin G Y, Zhang Z P, Wang H Y, et al. Enhanced strength and electrical conductivity of Al-Mg-Si alloy by thermo-mechanical treatment [J]. Mater. Sci. Eng., 2016, A650: 210
34 Zhong L P, Peng J, Li M, et al. Effect of Ce addition on the microstructure, thermal conductivity and mechanical properties of Mg-0.5Mn alloys [J]. J. Alloys Compd., 2016, 661: 402
35 Ying T, Zheng M Y, Li Z T, et al. Thermal conductivity of as-cast and as-extruded binary Mg-Zn alloys [J]. J. Alloys Compd., 2015, 621: 250
36 Yuan J W, Zhang K, Li T, et al. Anisotropy of thermal conductivity and mechanical properties in Mg-5Zn-1Mn alloy [J]. Mater. Des., 2012, 40: 257
37 Yang C B, Pan F S, Chen X H, et al. Thermal conductivity and mechanical properties of Sm-containing Mg-Zn-Zr alloys [J]. Mater. Sci. Technol., 2018, 34: 138
38 Liu Y F, Jia X J, Qiao X G, et al. Effect of La content on microstructure, thermal conductivity and mechanical properties of Mg-4Al magnesium alloys [J]. J. Alloys Compd., 2019, 806: 71
39 Pan H C, Pan F S, Peng J, et al. High-conductivity binary Mg-Zn sheet processed by cold rolling and subsequent aging [J]. J. Alloys Compd., 2013, 578: 493
40 Ying T, Zheng M Y, Li Z T, et al. Thermal conductivity of as-cast and as-extruded binary Mg-Al alloys [J]. J. Alloys Compd., 2014, 608: 19
41 Pan Q S, Zhang L X, Feng R, et al. Gradient cell-structured high-entropy alloy with exceptional strength and ductility [J]. Science, 2021, 374: 984
42 Zhong L, Peng J, Sun Y, et al. Microstructure and thermal conductivity of as-cast and as-extruded binary Mg-Mn alloys [J]. Mater. Sci. Technol., 2017, 33: 92
43 Ying T. Thermal behavior of pure magnesium and binaray magnesium alloys [D]. Harbin: Harbin Institute of Technology, 2015
应 韬. 纯镁和二元镁合金的导热行为研究 [D]. 哈尔滨: 哈尔滨工业大学, 2015
44 Galeazzi M, Bogorin D F, Prasai K, et al. Note: Thermal properties of magnesium in the 60-150 mK range [J]. Rev. Sci. Instrum., 2010, 81: 076105
45 Bakhtiyarov S I, Overfelt R A, Teodorescu S G. Electrical and thermal conductivity measurements on commercial magnesium alloys [A]. Proceedings of Magnesium Technology 2003 [C]. The Minerals, Metals & Materials Society, 2003: 129
46 Rudajevová A, Kúdela S, Staněk M, et al. Thermal properties of Mg-Li and Mg-Li-Al alloys [J]. Mater. Sci. Technol., 2003, 19: 1097
47 Yamasaki M, Kawamura Y. Thermal diffusivity and thermal conductivity of Mg-Zn-rare earth element alloys with long-period stacking ordered phase [J]. Scr. Mater., 2009, 60: 264
48 Kemp W R G, Sreedhar A K, White G K. The thermal conductivity of magnesium at low temperatures [J]. Proc. Phys. Soc., 1953, 66A: 1077
49 Ho C Y, Ackerman M W, Wu K Y, et al. Thermal conductivity of ten selected binary alloy systems [J]. J. Phys. Chem. Ref. Data, 1978, 7: 959
50 Peet M J, Hasan H S, Bhadeshia H K D H. Prediction of thermal conductivity of steel [J]. Int. J. Heat Mass Transfer, 2011, 54: 2602
51 Chester G V, Thellung A. The law of wiedemann and franz [J]. Proc. Phys. Soc., 1961, 77: 1005
52 Yuan J W. Study on properties of Mg-Zn-Mn alloys with high thermal conductivity [D]. Beijing: General Research Institute for Nonferrous Metals, 2013
袁家伟. 高导热Mg-Zn-Mn合金及其性能研究 [D]. 北京: 北京有色金属研究总院, 2013
53 Ren L B, Quan G F, Jiang Z Z, et al. Atmospheric heat dispersion research of Mg-Al-Zn magnesium alloys [J]. Rare Met. Mater. Eng., 2017, 46: 1265
任凌宝, 权高峰, 江柱中 等. Mg-Al-Zn系镁合金在大气中的散热性能研究 [J]. 稀有金属材料与工程, 2017, 46: 1265
54 Li S B, Yang X Y, Hou J T, et al. A review on thermal conductivity of magnesium and its alloys [J]. J. Magnes. Alloy., 2020, 8: 78
55 Zhong L P. Research on thermal conductivity of Mg-RE alloys and the development of high thermal conductivity of magnesium alloys [D]. Chongqing: Chongqing University, 2016
钟丽萍. 稀土镁合金导热性能及高导热镁合金研究 [D]. 重庆: 重庆大学, 2016
56 Liu X Q, Wu Y J, Liu Z L, et al. Thermal and electrical conductivity of as-cast Mg-4Y-xZn alloys [J]. Mater. Res. Express, 2018, 5: 066532
57 Li G Q, Zhang J H, Wu R Z, et al. Development of high mechanical properties and moderate thermal conductivity cast Mg alloy with multiple RE via heat treatment [J]. J. Mater. Sci. Technol., 2018, 34: 1076
58 Agarwal R, Fries S G, Lukas H L, et al. Assessment of the Mg-Zn system [J]. Int. J. Mater. Res., 1992, 83: 216
59 Zhou L, Huang Y D, Mao P L, et al. Investigations on hot tearing of Mg-Zn-(Al) alloys [A]. Magnesium Technology 2011 [M]. Cham: Springer, 2011: 125
60 Zhou L, Huang Y D, Mao P L, et al. Influence of composition on hot tearing in binary Mg-Zn alloys [J]. Int. J. Cast Met. Res., 2011, 24: 170
61 Wang J, Zhu G M, Wang L Y, et al. Origins of high ductility exhibited by an extruded magnesium alloy Mg-1.8Zn-0.2Ca: Experiments and crystal plasticity modeling [J]. J. Mater. Sci. Technol., 2021, 84: 27
62 Peng J, Zhong L P, Wang Y J, et al. Effect of Ce addition on thermal conductivity of Mg-2Zn-1Mn alloy [J]. J. Alloys Compd., 2015, 639: 556
63 Pan H, Pan F, Wang X, et al. High conductivity and high strength Mg-Zn-Cu alloy [J]. Mater. Sci. Technol., 2014, 30: 759
64 Li B C, Hou L G, Wu R Z, et al. Microstructure and thermal conductivity of Mg-2Zn-Zr alloy [J]. J. Alloys Compd., 2017, 722: 772
65 Chartrand P, Pelton A D. Critical evaluation and optimization of the thermodynamic properties and phase diagrams of the Al-Mg, Al-Sr, Mg-Sr, and Al-Mg-Sr systems [J]. J. Phase Equil., 1994, 15: 591
66 Zhu G M, Wang L Y, Wang J, et al. Highly deformable Mg-Al-Ca alloy with Al2Ca precipitates [J]. Acta Mater., 2020, 200: 236
67 Rudajevová A, Lukáč P. Comparison of the thermal properties of AM20 and AS21 magnesium alloys [J]. Mater. Sci. Eng., 2005, A397: 16
68 Rudajevová A, Staněk M, Lukáč P. Determination of thermal diffusivity and thermal conductivity of Mg-Al alloys [J]. Mater. Sci. Eng., 2003, A341: 152
69 Peng J, Zhong L P, Wang Y J, et al. Effect of extrusion temperature on the microstructure and thermal conductivity of Mg-2.0Zn-1.0Mn-0.2Ce alloys [J]. Mater. Des., 2015, 87: 914
70 Massalski T B, Okamoto H. Binary Alloy Phase Diagrams [M]. Okamoto: ASM International, 1990: 1
71 Masoumi M, Hoseini M, Pekguleryuz M. The influence of Ce on the microstructure and rolling texture of Mg-1%Mn alloy [J]. Mater. Sci. Eng., 2011, A528: 3122
72 Stanford N. The effect of calcium on the texture, microstructure and mechanical properties of extruded Mg-Mn-Ca alloys [J]. Mater. Sci. Eng, 2010, A528: 314
73 Han G, Ma G L, Liu X F. Effect of manganese on the microstructure of Mg-3Al alloy [J]. J. Alloys Compd., 2009, 486: 136
74 Wang J, Wang L Y, Zhu G M, et al. Understanding the high strength and good ductility in LPSO-containing Mg alloy using synchrotron X-ray diffraction [J]. Metall. Mater. Trans., 2018, 49A: 5382
75 Rudajevová A, von Buch F, Mordike B L. Thermal diffusivity and thermal conductivity of MgSc alloys [J]. J. Alloys Compd., 1999, 292: 27
76 Chen C J, Wang Q D, Yin D D. Thermal properties of Mg-11Y-5Gd-2Zn-0.5Zr (wt.%) alloy [J]. J. Alloys Compd., 2009, 487: 560
77 Xiang S L, Gupta M, Wang X J, et al. Enhanced overall strength and ductility of magnesium matrix composites by low content of graphene nanoplatelets [J]. Composites, 2017, 100A: 183
78 Hou J T, Du W B, Parande G, et al. Significantly enhancing the strength + ductility combination of Mg-9Al alloy using multi-walled carbon nanotubes [J]. J. Alloys Compd., 2019, 790: 974
79 Deng K K, Wang C J, Nie K B, et al. Recent research on the deformation behavior of particle reinforced magnesium matrix composite: A review [J]. Acta Metall. Sin. (Eng. Lett.), 2019, 32: 413
80 Hou J T, Du W B, Wang Z H, et al. Combination of enhanced thermal conductivity and strength of MWCNTs reinforced Mg-6Zn matrix composite [J]. J. Alloys Compd., 2020, 838: 155573
81 Yao F J, You G Q, Zeng S, et al. Fabrication, microstructure, and thermal conductivity of multilayered Cu mesh/AZ31 Mg foil composites [J]. J. Mater. Res. Technol., 2021, 14: 1539
82 Ma H B, Wang J H, Wang H Y, et al. Influence of nano-diamond content on the microstructure, mechanical and thermal properties of the ZK60 composites [J]. J. Magnes. Alloys, doi: 10.1016/j.jma.2021.03.034
83 Hou L G, Wu R Z, Wang X D, et al. Microstructure, mechanical properties and thermal conductivity of the short carbon fiber reinforced magnesium matrix composites [J]. J. Alloys Compd., 2017, 695: 2820
[1] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[2] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[3] SHAO Xiaohong, PENG Zhenzhen, JIN Qianqian, MA Xiuliang. Unravelling the {101¯2} Twin Intersection Between LPSO Structure/SFs in Magnesium Alloy[J]. 金属学报, 2023, 59(4): 556-566.
[4] LI Dou, XU Changjiang, LI Xuguang, LI Shuangming, ZHONG Hong. Thermoelectric Properties of P-Type CeyFe3CoSb12 Thermoelectric Materials and Coatings Doped with La[J]. 金属学报, 2023, 59(2): 237-247.
[5] TANG Weineng, MO Ning, HOU Juan. Research Progress of Additively Manufactured Magnesium Alloys: A Review[J]. 金属学报, 2023, 59(2): 205-225.
[6] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[7] YANG Lei, ZHAO Fan, JIANG Lei, XIE Jianxin. Development of Composition and Heat Treatment Process of 2000 MPa Grade Spring Steels Assisted by Machine Learning[J]. 金属学报, 2023, 59(11): 1499-1512.
[8] SUN Tengteng, WANG Hongze, WU Yi, WANG Mingliang, WANG Haowei. Effect ofIn Situ 2%TiB2 Particles on Microstructure and Mechanical Properties of 2024Al Additive Manufacturing Alloy[J]. 金属学报, 2023, 59(1): 169-179.
[9] HAN Linzhi, MU Juan, ZHOU Yongkang, ZHU Zhengwang, ZHANG Haifeng. Effect of Heat Treatment Temperature on Microstructure and Mechanical Properties of Ti0.5Zr1.5NbTa0.5Sn0.2 High-Entropy Alloy[J]. 金属学报, 2022, 58(9): 1159-1168.
[10] LI Zhao, JIANG He, WANG Tao, FU Shuhong, ZHANG Yong. Microstructure Evolution of GH2909 Low Expansion Superalloy During Heat Treatment[J]. 金属学报, 2022, 58(9): 1179-1188.
[11] ZHANG Jiarong, LI Yanfen, WANG Guangquan, BAO Feiyang, RUI Xiang, SHI Quanqiang, YAN Wei, SHAN Yiyin, YANG Ke. Effects of Heat Treatment on Microstructure and Mechanical Properties of a Bimodal Grain Ultra-Low Carbon 9Cr-ODS Steel[J]. 金属学报, 2022, 58(5): 623-636.
[12] CHEN Yang, MAO Pingli, LIU Zheng, WANG Zhi, CAO Gengsheng. Detwinning Behaviors and Dynamic Mechanical Properties of Precompressed AZ31 Magnesium Alloy Subjected to High Strain Rates Impact[J]. 金属学报, 2022, 58(5): 660-672.
[13] YUAN Bo, GUO Mingxing, HAN Shaojie, ZHANG Jishan, ZHUANG Linzhong. Effect of 3%Zn Addition on the Non-Isothermal Precipitation Behaviors of Al-Mg-Si-Cu Alloys[J]. 金属学报, 2022, 58(3): 345-354.
[14] ZHOU Lijun, WEI Song, GUO Jingdong, SUN Fangyuan, WANG Xinwei, TANG Dawei. Investigations on the Thermal Conductivity of Micro-Scale Cu-Sn Intermetallic Compounds Using Femtosecond Laser Time-Domain Thermoreflectance System[J]. 金属学报, 2022, 58(12): 1645-1654.
[15] CHEN Run, WANG Shuai, AN Qi, ZHANG Rui, LIU Wenqi, HUANG Lujun, GENG Lin. Effect of Hot Extrusion and Heat Treatment on the Microstructure and Tensile Properties of Network Structured TiBw/TC18 Composites[J]. 金属学报, 2022, 58(11): 1478-1488.
No Suggested Reading articles found!