|
|
Critical Inclusion Size and Void Growth in Dual-Phase Ferrite-Bainite Steel During Ductile Fracture |
ZHAO Yafeng1,2, LIU Sujie1, CHEN Yun1, MA Hui1, MA Guangcai3, GUO Yi1( ) |
1Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China 3Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
|
Cite this article:
ZHAO Yafeng, LIU Sujie, CHEN Yun, MA Hui, MA Guangcai, GUO Yi. Critical Inclusion Size and Void Growth in Dual-Phase Ferrite-Bainite Steel During Ductile Fracture. Acta Metall Sin, 2023, 59(5): 611-622.
|
Abstract Ferrite-bainite dual-phase steel is widely used in the automotive industry owing to its high strength and excellent ductility. The impact of inclusions and void growth behavior in dual-phase steel is a major concern among researchers seeking to achieve better mechanical properties. To investigate this, a cross-length-scale multimodal method was employed to study the influence of local microstructures on void growth during ductile fracture of a dual-phase ferrite-bainite steel. During tensile testing, laboratory X-ray computed tomography (XCT) was used to measure the evolution of void volume. 3D-electron back scatter diffraction (3D-EBSD) provided information about the voids nucleated at both inclusion particles and bainite phases or their boundaries. Carefully controlled, broad-focused ion beam excavation was performed to reveal a new interface at a specific depth of the voids. Results showed that voids resulting from large inclusions are significantly bigger than either small inclusions or the bainite phase. Large inclusions lead to large voids even when the strain correlated with the growth of those voids is lower. An investigation of the dislocation densities surrounding the voids suggested that they may be related to the strain gradient around the different inclusion sizes. A critical inclusion size estimated to be around 1.85-2.86 μm was found below which nucleation occurs but with limited growth. The elevated rate of local dislocation multiplication due to local deformation gradient effects can impede the growth of smaller voids. The growth of voids is heterogeneous, and their shape correlates well with the deformability of the surrounding grains, as indicated by a Schmid factor weighted using the grain size. This weighted Schmid factor explains not only the shape of the voids but also sheds light on the ease of void coalescence based on the microstructures separating the voids.
|
Received: 15 June 2022
|
|
Fund: National Natural Science Foundation of China(52201149);National Science and Technology Major Project(J2019-VI-0019-0134);Strategic Priority Research Program of Chinese Academy of Sciences(XDC04000000);ERC CORREL-CT Project(695638) |
1 |
Pierman A P, Bouaziz O, Pardoen T, et al. The influence of microstructure and composition on the plastic behaviour of dual-phase steels[J]. Acta Mater., 2014, 73: 298
doi: 10.1016/j.actamat.2014.04.015
|
2 |
Tasan C C, Diehl M, Yan D, et al. An overview of dual-phase steels: Advances in microstructure-oriented processing and micromechanically guided design[J]. Annu. Rev. Mater. Res., 2015, 45: 391
doi: 10.1146/matsci.2015.45.issue-1
|
3 |
Matsuno T, Teodosiu C, Maeda D, et al. Mesoscale simulation of the early evolution of ductile fracture in dual-phase steels[J]. Int. J. Plast., 2015, 74: 17
doi: 10.1016/j.ijplas.2015.06.004
|
4 |
Toda H, Takijiri A, Azuma M, et al. Damage micromechanisms in dual-phase steel investigated with combined phase- and absorption-contrast tomography[J]. Acta Mater., 2017, 126: 401
doi: 10.1016/j.actamat.2017.01.010
|
5 |
Pineau A, Benzerga A A, Pardoen T. Failure of metals I: Brittle and ductile fracture[J]. Acta Mater., 2016, 107: 424
doi: 10.1016/j.actamat.2015.12.034
|
6 |
Goods S H, Brown L M. Overview No. 1: The nucleation of cavities by plastic deformation[J]. Acta Metall., 1979, 27: 1
doi: 10.1016/0001-6160(79)90051-8
|
7 |
Babout L, Brechet Y, Maire E, et al. On the competition between particle fracture and particle decohesion in metal matrix composites[J]. Acta Mater., 2004, 52: 4517
doi: 10.1016/j.actamat.2004.06.009
|
8 |
Achouri M, Germain G, Dal Santo P, et al. Experimental characterization and numerical modeling of micromechanical damage under different stress states[J]. Mater. Des., 2013, 50: 207
doi: 10.1016/j.matdes.2013.02.075
|
9 |
Benzerga A A, Besson J, Pineau A. Anisotropic ductile fracture: Part I: Experiments[J]. Acta Mater., 2004, 52: 4623
doi: 10.1016/j.actamat.2004.06.020
|
10 |
Liang W, Yuan Q, Chen G H, et al. Fracture evolution in ferrite/martensite dual-phase flange steel[J]. Ironmak. Steelmak., 2021, 48: 88
doi: 10.1080/03019233.2020.1733779
|
11 |
Komori K. Simulation of the influence of Lode parameter on ductile fracture using an ellipsoidal void model[J]. Int. J. Solids Struct., 2021, 229: 111143
doi: 10.1016/j.ijsolstr.2021.111143
|
12 |
Marteleur M, Leclerc J, Colla M S, et al. Ductile fracture of high strength steels with morphological anisotropy, Part I: Characterization, testing, and void nucleation law[J]. Eng. Fract. Mech., 2021, 244: 107569
doi: 10.1016/j.engfracmech.2021.107569
|
13 |
Kusche C F, Pütz F, Münstermann S, et al. On the effect of strain and triaxiality on void evolution in a heterogeneous microstructure—A statistical and single void study of damage in DP800 steel[J]. Mater. Sci. Eng., 2021, A799: 140332
|
14 |
Lubarda V A, Schneider M S, Kalantar D H, et al. Void growth by dislocation emission[J]. Acta Mater., 2004, 52: 1397
doi: 10.1016/j.actamat.2003.11.022
|
15 |
Greenwood G W, Harris J E. Note on vacancy condensation on particles[J]. Acta Metall., 1965, 13: 936
doi: 10.1016/0001-6160(65)90092-1
|
16 |
Ashby M F. Work hardening of dispersion-hardened crystals[J]. Philos. Mag., 1966, 14A: 1157
|
17 |
Bulatov V V, Wolfer W G, Kumar M. Shear impossibility: Comments on “Void growth by dislocation emission” and “Void growth in metals: Atomistic calculations”[J]. Scr. Mater., 2010, 63: 144
doi: 10.1016/j.scriptamat.2010.03.001
|
18 |
Gungor M R, Maroudas D, Zhou S J. Molecular-dynamics study of the mechanism and kinetics of void growth in ductile metallic thin films[J]. Appl. Phys. Lett., 2000, 77: 343
doi: 10.1063/1.126971
|
19 |
Segurado J, Llorca J. Discrete dislocation dynamics analysis of the effect of lattice orientation on void growth in single crystals[J]. Int. J. Plast., 2010, 26: 806
doi: 10.1016/j.ijplas.2009.10.009
|
20 |
Scheyvaerts F, Pardoen T, Onck P R. A new model for void coalescence by internal necking[J]. Int. J. Damage Mech., 2010, 19: 95
doi: 10.1177/1056789508101918
|
21 |
Weck A, Wilkinson D S, Maire E, et al. Visualization by X-ray tomography of void growth and coalescence leading to fracture in model materials[J]. Acta Mater., 2008, 56: 2919
doi: 10.1016/j.actamat.2008.02.027
|
22 |
Pardoen T, Doghri I, Delannay F. Experimental and numerical comparison of void growth models and void coalescence criteria for the prediction of ductile fracture in copper bars[J]. Acta Mater., 1998, 46: 541
doi: 10.1016/S1359-6454(97)00247-4
|
23 |
Tanaka K, Mori T, Nakamura T. Cavity formation at the interface of a spherical inclusion in a plastically deformed matrix[J]. Philos. Mag., 1970, 21A: 267
|
24 |
Gurson A L. Continuum theory of ductile rupture by void nucleation and growth: Part I—Yield criteria and flow rules for porous ductile media[J]. J. Eng. Mater. Technol., 1977, 99: 2
doi: 10.1115/1.3443401
|
25 |
Tvergaard V. Influence of voids on shear band instabilities under plane strain conditions[J]. Int. J. Fract., 1981, 17: 389
doi: 10.1007/BF00036191
|
26 |
Tvergaard V, Needleman A. Analysis of the cup-cone fracture in a round tensile bar[J]. Acta Metall., 1984, 32: 157
doi: 10.1016/0001-6160(84)90213-X
|
27 |
Burnett T L, McDonald S A, Gholinia A, et al. Correlative tomography[J]. Sci. Rep., 2014, 4: 4711
doi: 10.1038/srep04711
pmid: 24736640
|
28 |
Slater T J A, Bradley R S, Bertali G, et al. Multiscale correlative tomography: An investigation of creep cavitation in 316 stainless steel[J]. Sci. Rep., 2017, 7: 7332
doi: 10.1038/s41598-017-06976-5
pmid: 28779097
|
29 |
Daly M, Burnett T L, Pickering E J, et al. A multi-scale correlative investigation of ductile fracture[J]. Acta Mater., 2017, 130: 56
doi: 10.1016/j.actamat.2017.03.028
|
30 |
Ishikawa N, Yasuda K, Sueyoshi H, et al. Microscopic deformation and strain hardening analysis of ferrite-bainite dual-phase steels using micro-grid method[J]. Acta Mater., 2015, 97: 257
doi: 10.1016/j.actamat.2015.06.037
|
31 |
Burnett T L, Kelley R, Winiarski B, et al. Large volume serial section tomography by Xe plasma FIB dual beam microscopy[J]. Ultramicroscopy, 2016, 161: 119
doi: S0304-3991(15)30064-4
pmid: 26683814
|
32 |
Burnett T L, Winiarski B, Kelley R, et al. Xe+ plasma FIB: 3D microstructures from nanometers to hundreds of micrometers[J]. Microsc. Today, 2016, 24: 32
|
33 |
Watanabe R. Possible slip systems in body centered cubic iron[J]. Mater. Trans., 2006, 47: 1886
doi: 10.2320/matertrans.47.1886
|
34 |
Weinberger C R, Boyce B L, Battaile C C. Slip planes in bcc transition metals[J]. Int. Mater. Rev., 2013, 58: 296
doi: 10.1179/1743280412Y.0000000015
|
35 |
Nye J F. Some geometrical relations in dislocated crystals[J]. Acta Metall., 1953, 1: 153
doi: 10.1016/0001-6160(53)90054-6
|
36 |
Pantleon W. Resolving the geometrically necessary dislocation content by conventional electron backscattering diffraction[J]. Scr. Mater., 2008, 58: 994
doi: 10.1016/j.scriptamat.2008.01.050
|
37 |
Wilkinson A J, Meaden G, Dingley D J. High-resolution elastic strain measurement from electron backscatter diffraction patterns: New levels of sensitivity[J]. Ultramicroscopy, 2006, 106: 307
pmid: 16324788
|
38 |
Britton T B, Liang H, Dunne F P E, et al. The effect of crystal orientation on the indentation response of commercially pure titanium: Experiments and simulations[J]. Proc. Roy. Soc., 2010, 466A: 695
|
39 |
Britton T B, Wilkinson A J. Stress fields and geometrically necessary dislocation density distributions near the head of a blocked slip band[J]. Acta Mater., 2012, 60: 5773
doi: 10.1016/j.actamat.2012.07.004
|
40 |
Guo Y, Collins D M, Tarleton E, et al. Dislocation density distribution at slip band-grain boundary intersections[J]. Acta Mater., 2020, 182: 172
doi: 10.1016/j.actamat.2019.10.031
|
41 |
Brown L M, Stobbs W M. The work-hardening of copper-silica V. Equilibrium plastic relaxation by secondary dislocations[J]. Philos. Mag., 1976, 34A: 351
|
42 |
Traiviratana S, Bringa E M, Benson D J, et al. Void growth in metals: Atomistic calculations[J]. Acta Mater., 2008, 56: 3874
doi: 10.1016/j.actamat.2008.03.047
|
43 |
Lavrentev F F. The type of dislocation interaction as the factor determining work hardening[J]. Mater. Sci. Eng., 1980, 46: 191
doi: 10.1016/0025-5416(80)90175-5
|
44 |
Guo Y, Schwiedrzik J, Michler J, et al. On the nucleation and growth of twin in commercial purity titanium: In situ investigation of the local stress field and dislocation density distribution[J]. Acta Mater., 2016, 120: 292
doi: 10.1016/j.actamat.2016.08.073
|
45 |
Zhao Z T, Wang X S, Qiao G Y, et al. Effect of bainite morphology on deformation compatibility of mesostructure in ferrite/bainite dual-phase steel: Mesostructure-based finite element analysis[J]. Mater. Des., 2019, 180: 107870
doi: 10.1016/j.matdes.2019.107870
|
46 |
Fillafer A, Krempaszky C, Werner E. On strain partitioning and micro-damage behavior of dual-phase steels[J]. Mater. Sci. Eng., 2014, A614: 180
|
47 |
Brands D, Balzani D, Scheunemann L, et al. Computational modeling of dual-phase steels based on representative three-dimensional microstructures obtained from EBSD data[J]. Arch. Appl. Mech., 2016, 86: 575
doi: 10.1007/s00419-015-1044-1
|
48 |
Liu Y, Fan D W, Arroyave R, et al. Microstructure-based modeling of the effect of inclusion on the bendability of advanced high strength dual-phase steels[J]. Metals, 2021, 11: 431
doi: 10.3390/met11030431
|
49 |
Klevebring B I, Bogren E, Mahrs R. Determination of the critical inclusion size with respect to void formation during hot working[J]. Metall. Trans., 1975, 6A: 319
|
50 |
Ye Y G. Cavity nucleation, growth and stress field in elastic-plastic medium[J]. Acta Mech. Sol. Sin., 1990, 11: 201
|
|
叶裕恭. 弹塑性材料中孔洞成核、发展及应力场[J]. 固体力学学报, 1990, 11: 201
|
51 |
Bomas H, Mayr P, Linkewitz T. Inclusion size distribution and endurance limit of a hard steel[J]. Extremes, 1999, 2: 149
doi: 10.1023/A:1009918902623
|
52 |
Lee M, Kang N, Liu S, et al. Effects of inclusion size and acicular ferrite on cold cracking for high-strength steel welds of YS 600 MPa grade[J]. Sci. Technol. Weld. Joining, 2016, 21: 711
doi: 10.1080/13621718.2016.1178833
|
53 |
Wang P, Wang B, Liu Y, et al. Effects of inclusion types on the high-cycle fatigue properties of high-strength steel[J]. Scr. Mater., 2022, 206: 114232
doi: 10.1016/j.scriptamat.2021.114232
|
54 |
Gu C, Wang M, Bao Y P, et al. Quantitative analysis of inclusion engineering on the fatigue property improvement of bearing steel[J]. Metals, 2019, 9: 476
doi: 10.3390/met9040476
|
55 |
Peng Z X, Liu J, Huang F, et al. Comparative study of non-metallic inclusions on the critical size for HIC initiation and its influence on hydrogen trapping[J]. Int. J. Hydrogen Energy, 2020, 45: 12616
doi: 10.1016/j.ijhydene.2020.02.131
|
56 |
Prithivirajan V, Sangid M D. The role of defects and critical pore size analysis in the fatigue response of additively manufactured IN718 via crystal plasticity[J]. Mater. Des., 2018, 150: 139
doi: 10.1016/j.matdes.2018.04.022
|
57 |
Chen Y H, Park S U, Wei D, et al. A dictionary approach to electron backscatter diffraction indexing[J]. Microsc. Microanal., 2015, 21: 739
doi: 10.1017/S1431927615000756
pmid: 26055190
|
58 |
Singh S, Guo Y, Winiarski B, et al. High resolution low kV EBSD of heavily deformed and nanocrystalline aluminium by dictionary-based indexing[J]. Sci. Rep., 2018, 8: 10991
doi: 10.1038/s41598-018-29315-8
pmid: 30030500
|
59 |
Ashby M F, Gelles S H, Tanner L E. The stress at which dislocations are generated at a particle-matrix interface[J]. Philos. Mag., 1969, 19A: 757
|
60 |
Babout L, Maire E, Fougères R. Damage initiation in model metallic materials: X-ray tomography and modelling[J]. Acta Mater., 2004, 52: 2475
doi: 10.1016/j.actamat.2004.02.001
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|