Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (6): 777-786    DOI: 10.11900/0412.1961.2021.00315
Research paper Current Issue | Archive | Adv Search |
Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate
FENG Aihan1, CHEN Qiang2, WANG Jian3, WANG Hao4, QU Shoujiang1(), CHEN Daolun5()
1School of Materials Science and Engineering, Tongji University, Shanghai 200092, China
2Southwest Technology and Engineering Research Institute, Chongqing 400039, China
3BaoTi Group Co., Ltd., Baoji 721014, China
4Interdisciplinary Center for Additive Manufacturing, School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
5Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada
Cite this article: 

FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate. Acta Metall Sin, 2023, 59(6): 777-786.

Download:  HTML  PDF(4075KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Multielement and multiphase intermetallic alloys based on an ordered orthorhombic (O) phase Ti2AlNb, where the presence of a long-range order superlattice structure effectively impedes the movement of dislocations and high-temperature diffusion, are a class of highly promising lightweight high-temperature structural materials for aerospace applications due to their high specific strength and superior fracture toughness. Thermal stability of microstructures in the hot rolled sheet of a low-density Ti2AlNb-based alloy has been investigated in a temperature range from 600oC to 1100oC for 12 h via OM, SEM, XRD, and TEM/STEM. The results showed that the initial Ti2AlNb-based alloy hot rolled sheet consisted of α2, B2, and O phases. Furthermore, the Ti2AlNb-based alloy hot rolled sheet at 600oC for 12 h consisted of α2, B2, and O phases, where the particle shaped α2 phase was distributed in the B2 matrix, and lath-like O phase lay inbetween the α2 particles. The spheroidization of the α2 phase started to occur along with the coarsening and solutionizing of the lath O phase in the B2 matrix at a temperature between 800oC and 900oC for 12 h, while the hot rolled Ti2AlNb-based alloy plate was still composed of α2, B2, and O phases. When the temperature reached 950oC, the O phase disappeared in the B2 matrix. Only α2 + B2 two phases were present in the hot rolled Ti2AlNb-based alloy at 950-1000oC for 12 h, where the α2 phase was spheroidized and tended to distribute surrounding B2 grain boundaries. When the temperature rose to 1100oC, the alloy contained a B2 single phase with only some residual α2 phase. Moreover, the Vickers microhardness contour vs temperature plot revealed that a peak hardness of as high as 509 HV appeared at 600oC due to the presence of numerous fine O laths.

Key words:  Ti2AlNb-based alloy      phase transformation      rolling sheet      microstructure      thermal stability     
Received:  30 July 2021     
ZTFLH:  TG146.2  
Fund: National Key Research and Development Program of China(2018YFB0704100);National Natural Science Foundation of China(51871168);Southwest Technology and Engineering Research Institute Cooperation Fund(HDHDW5902020102)
Corresponding Authors:  QU Shoujiang, associate professor, Tel:(021)39947690, E-mail: qushoujiang@tongji.edu.cn
CHEN Daolun, professor, Tel: +416-979-5000 (ext.556487), E-mail: dchen@torontomu.ca

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00315     OR     https://www.ams.org.cn/EN/Y2023/V59/I6/777

Fig.1  Microstructures and selected area electron diffraction (SAED) patterns of hot rolled Ti2AlNb-based alloy plate
Fig.2  OM images of hot rolled Ti2AlNb-based alloy plate after heat treatment at 600oC (a), 800oC (b), 900oC (c), 950oC (d), 1000oC (e), and 1100oC (f) for 12 h and then water quenching
Fig.3  SEM images of hot rolled Ti2AlNb-based alloy plate after heat treatment at 600oC (a), 800oC (b), 900oC (c), 950oC (d), 1000oC (e), and 1100oC (f) for 12 h and then water quenching
Fig.4  XRD spectra of hot rolled Ti2AlNb-based alloys plate before (a) and after heat treatment at 600oC (b), 800oC (c), 850oC (d), 900oC (e), 950oC (f), 1000oC (g), 1050oC (h), and 1100oC (i) for 12 h and then water quenching (Insets in Figs.4c-e show the magnified spectra)
Fig.5  TEM (a) and STEM (b) images of hot rolled Ti2AlNb-based alloy plate after heat treatment at 600oC for 12 h and then water quenching, and corresponding SAED patterns of points I (c) and II (d) in Fig.5a
PhaseOrientation relationshipRef.
B2/α2[11¯1]B2//[112¯0]a2, (011)B2//(0001)a2[31]
B2/O[1¯11]B2//[11¯0]O, (110)B2//(001)O[30,31]
α2/O[0001]a2//[001]O, (101¯0)a2//(110)O[1,3,8]
Table 1  Summaries of orientation relationships among α2, B2, and O phases[1,3,8,30,31]
Fig.6  TEM (a) and STEM (b) images of hot rolled Ti2AlNb-based alloy plate after heat treatment at 850oC for 12 h and then water quenching, and corresponding SAED patterns of points I (c), II (d), III (e), and IV (f) in Fig.6b
Fig.7  TEM image (a) of hot rolled Ti2AlNb-based alloy plate after heat treatment at 900oC for 12 h and then water quenching, and corresponding SAED patterns of points I (b), II (c), and III (d) in Fig.7a
Fig.8  TEM (a) and STEM (b) images of hot rolled Ti2AlNb-based alloy plate after heat treatment at 1000oC for 12 h and then water quenching, and corresponding SAED patterns of points I (c), II (d), III (e), and IV (f) in Fig.8a
Fig.9  Microhardnesses of hot rolled Ti2AlNb-based alloy plate as a function of heat treatment temperature
Heat treatmentPhase constituent
XRDSEMTEM
As-rolledB2 + O + α2B2 + O + α2B2 + α2
600oC, 12 h, WQB2 + O + α2B2 + O + α2B2 + O + α2
800oC, 12 h, WQB2 + O + α2B2 + O + α2-
850oC, 12 h, WQB2 + O + α2B2 + O + α2B2 + O + α2
900oC, 12 h, WQB2 + O + α2B2 + O + α2B2 + O + α2
950oC, 12 h, WQB2 + α2B2 + α2-
1000oC, 12 h, WQB2 + α2B2 + α2B2 + α2
1050oC, 12 h, WQB2 + α2B2 + α2-
1100oC, 12 h, WQB2 + α2B2 + α2-
Table 2  Summaries of phase constituents of hot rolled Ti2AlNb-based alloy plate before and after heat treatment according to XRD, SEM, and TEM analyses
1 Banerjee D, Gogia A K, Nandi T K, et al. A new ordered orthorhombic phase in a Ti3Al-Nb alloy [J]. Acta Metall., 1988, 36: 871
doi: 10.1016/0001-6160(88)90141-1
2 Banerjee D. The intermetallic Ti2AlNb [J]. Prog. Mater. Sci., 1997, 42: 135
doi: 10.1016/S0079-6425(97)00012-1
3 Qu S J, Feng A H, Shagiev M R, et al. Superplastic behavior of the fine-grained Ti-21Al-18Nb-1Mo-2V-0.3Si intermetallic alloy [J]. Lett. Mater., 2018, 8: 567
doi: 10.22226/2410-3535
4 Zhu H P, Qu S J, Qi G Y, et al. High temperature oxidation behavior of as-rolled Ti2AlNb-based alloy [J]. Chin. J. Rare Met., 2016, 40: 104
朱慧萍, 曲寿江, 祁广源 等. Ti2AlNb基合金轧板高温抗氧化性能研究 [J]. 稀有金属, 2016, 40: 104
5 Xiang J M, Mi G B, Qu S J, et al. Thermodynamic and microstructural study of Ti2AlNb oxides at 800oC [J]. Sci. Rep., 2018, 8: 12761
doi: 10.1038/s41598-018-31196-w pmid: 30143715
6 Zhang Y L, Feng A H, Qu S J, et al. Microstructure and low cycle fatigue of a Ti2AlNb-based lightweight alloy [J]. J. Mater. Sci. Technol., 2020, 44: 140
doi: 10.1016/j.jmst.2020.01.032
7 Feng A H, Li B B, Shen J. Recent advances on Ti2AlNb-based alloys [J]. J. Mater. Metall., 2011, 10: 30
冯艾寒, 李渤渤, 沈 军. Ti2AlNb基合金的研究进展 [J]. 材料与冶金学报, 2011, 10: 30
8 Shen J, Feng A H. Recent advances on microstructural controlling and hot forming of Ti2AlNb-based alloys [J]. Acta Metall. Sin., 2013, 49: 1286
doi: 10.3724/SP.J.1037.2013.00607
沈 军, 冯艾寒. Ti2AlNb基合金微观组织调制及热成形研究进展 [J]. 金属学报, 2013, 49: 1286
9 Li Z J, Tian W, Li J W, et al. Application of Ti2AlNb alloy electron beam welding on aero-engine casing [J]. Gas Turbine Exp. Res., 2020, 33(3): 52
李祚军, 田 伟, 李晋炜 等. Ti2AlNb合金电子束焊接在航空发动机机匣中的应用 [J]. 燃气涡轮试验与研究, 2020, 33(3): 52
10 Zhang H Y, Yan N, Liang H Y, et al. Phase transformation and microstructure control of Ti2AlNb-based alloys: A review [J]. J. Mater. Sci. Technol., 2021, 80: 203
doi: 10.1016/j.jmst.2020.11.022
11 Ravi C, Vajeeston P, Mathijaya S, et al. Electronic structure, phase stability, and cohesive properties of Ti2 XAl (X = Nb, V, Zr) [J]. Phys. Rev., 1999, 60B: 15683
12 Pathak A, Singh A K. A first principles study of Ti2AlNb intermetallic [J]. Solid State Commun., 2015, 204: 9
doi: 10.1016/j.ssc.2014.12.002
13 Morris M A, Morris D G. Strain localization, slip-band formation and twinning associated with deformation of a Ti-24at.%Al-11at.%Nb alloy [J]. Philos. Mag., 1991, 63A: 1175
14 Kazantseva N V, Demakov S L, Popov A A. Microstructure and plastic deformation of orthorhombic titanium aluminides Ti2AlNb. III. Formation of transformation twins upon the B2→Ophase transformation [J]. Phys. Met. Metallogr., 2007, 103: 378
doi: 10.1134/S0031918X07040102
15 Kazantseva N V, Demakov S L, Popov A A. Microstructure and plastic deformation of orthorhombic titanium aluminides Ti2AlNb. IV. Formation of the transformation twins upon the α2→O phase transformation [J]. Phys. Met. Metallogr., 2007, 103: 388
doi: 10.1134/S0031918X07040114
16 Liang X B, Zhou J J, Zhang J W, et al. High cycle fatigue at high temperatures of the lamellar microstructure of Ti-22Al-25Nb alloy [J]. Titanium Ind. Prog., 2019, 36(2): 20
梁晓波, 周俊吉, 张建伟 等. 板条组织Ti-22Al-25Nb合金高温高周疲劳行为 [J]. 钛工业进展, 2019, 36(2): 20
17 Luo C, Zhang Y, Wang X Y, et al. Effect of heat treatment on microstructure and properties of cast Ti-22Al-25Nb alloy [J]. Aerosp. Manuf. Technol., 2020, (2): 18
骆 晨, 张 寅, 王新英 等. 热处理对铸造Ti2AlNb合金组织和力学性能的影响 [J]. 航天制造技术, 2020, (2): 18
18 Li B B. Plate preparation, microstructure and mechanical properties of low-density Ti2AlNb-based alloys [D]. Harbin: Harbin Institute of Technology, 2011
李渤渤. 低密度Ti2AlNb基合金板材制备及组织与力学性能研究 [D] 哈尔滨: 哈尔滨工业大学, 2011
19 Chen Z. Research on microstructure and mechanical properties of Ti2AlNb-based alloy fabricated by multiple isothermal forging [D]. Harbin: Harbin Institute of Technology, 2013
陈 卓. Ti2AlNb基合金多向等温锻造组织与力学性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2013
20 Li S Y. Phase transformation and superplasticity deformation mechanism in Ti2AlNb-based alloys [D]. Harbin: Harbin Institute of Technology, 2013
李少雨. Ti2AlNb基合金相变及超塑性变形机理研究 [D]. 哈尔滨: 哈尔滨工业大学, 2013
21 Zhou Y, Cao J X, Huang X, et al. Microstructure evolution and comprehensive mechanical properties of β/B2 processed Ti-22Al-23Nb-2(Mo, Zr) alloy [J]. J. Aeronaut. Mater., 2020, 40(4): 25
周 毅, 曹京霞, 黄 旭 等. β/B2锻造Ti-22Al-23Nb-2(Mo, Zr)合金的组织演化与综合力学性能 [J]. 航空材料学报, 2020, 40(4): 25
22 Li J J, Zeng W D, Xue C. Effects of hot deformation parameters on lamellar microstructure evolution of Ti2AlNb based alloy [J]. Chin. J. Nonferrous Met., 2014, 24: 1998
李君珺, 曾卫东, 薛 晨. 热变形参数对Ti2AlNb基合金片层组织演变的影响 [J]. 中国有色金属学报, 2014, 24: 1998
23 Wang S L, Zeng W D, Ma X, et al. Effect of solution temperature on microstructure of Ti-22Al-25Nb alloy [J]. Mater. Heat Treat., 2009, 38(8): 106
王邵丽, 曾卫东, 马 雄 等. 固溶温度对Ti-22Al-25Nb合金微观组织的影响 [J]. 材料热处理技术, 2009, 38(8): 106
24 Boehlert C J, Majumdar B S, Seetharaman V, et al. Part I. The microstructural evolution in Ti-Al-Nb O + bcc orthorhombic alloys [J]. Metall. Mater. Trans., 1999, 30A: 2305
25 Boehlert C J. The phase evolution and microstructural stability of an orthorhombic Ti-23Al-27Nb alloy [J]. J. Phase Equilib., 1999, 20: 101
doi: 10.1007/s11669-999-0007-z
26 Boehlert C J, Miracle D B. Part II. The creep behavior of Ti-Al-Nb O + bcc orthorhombic alloys [J]. Metall. Mater. Trans., 1999, 30A: 2349
27 Boehlert C J. Microstructure, creep, and tensile behavior of a Ti-12Al-38Nb (at.%) beta+orthorhombic alloy [J]. Mater. Sci. Eng., 1999, A267: 82
28 Boehlert C J. Part III. The tensile behavior of Ti-Al-Nb O + bcc orthorhombic alloys [J]. Metall. Mater. Trans., 2001, 32A: 1977
29 Lin P, He Z B, Yuan S J, et al. Instability of the O-phase in Ti-22Al-25Nb alloy during elevated-temperature deformation [J]. J. Alloys Compd., 2013, 578: 96
doi: 10.1016/j.jallcom.2013.05.018
30 Bendersky L A, Boettinger W J, Roytburd A. Coherent precipitates in the b.c.c./orthorhombic two-phase field of the Ti-Al-Nb system [J]. Acta Metall. Mater., 1991, 39: 1959
doi: 10.1016/0956-7151(91)90165-W
31 Muraleedharan K, Gogia A K, Nandy T K, et al. Transformations in a Ti-24Al-15Nb alloy: Part I. Phase equilibria and microstructure [J]. Metall. Trans., 1992, 23A: 401
32 Popov A A, Illarionov A G, Grib S V, et al. Phase and structural transformations in the alloy on the basis of the orthorhombic titanium aluminide [J]. Phys. Met. Metallogr., 2008, 106: 399
doi: 10.1134/S0031918X08100104
33 Kazantseva N V, Lepikhin S V. Study of the Ti-Al-Nb phase diagram [J]. Phys. Met. Metall., 2006, 102: 169
doi: 10.1134/S0031918X06080084
[1] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[10] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[11] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[12] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[13] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[14] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[15] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
No Suggested Reading articles found!