Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (6): 757-766    DOI: 10.11900/0412.1961.2022.00109
Research paper Current Issue | Archive | Adv Search |
Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route
ZHANG Deyin1,2(), HAO Xu1, JIA Baorui1, WU Haoyang1, QIN Mingli1,2,3(), QU Xuanhui1,3
1Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China
3Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
Cite this article: 

ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route. Acta Metall Sin, 2023, 59(6): 757-766.

Download:  HTML  PDF(3399KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Iron-based metal/ceramic nanocomposite materials have attracted increasing attention owing to their outstanding mechanical, electrical, and magnetic properties with potential applications in many industrial fields. However, several technical routes, such as mechanical alloying, sol-gel, and electrodeposition, have limitations, including lengthy synthesis processes, complex experimental equipment, and expensive raw materials. In view of the urgent demand for high-quality iron-based metal/ceramic magnetic nanocomposites, Fe-Y2O3 nanocomposite powders with different Y2O3 contents (mass fraction) have been prepared using a combustion-based route. The effects of the Y2O3 content on the microstructure, grain size, and magnetic and sintering properties of the nanocomposite powders were examined. The Fe-Y2O3 nanocomposite powders exhibited a connected network structure composed of nanoparticles regardless of the Y2O3 content, but the grain size decreased gradually with increasing Y2O3 content. The magnetic performance test showed that the iron nanopowder without Y2O3 had a saturation magnetic induction and coercivity (Hc) of 1.97 T and 6.4 kA/m, respectively. The saturation magnetic induction of the Fe-Y2O3 nanocomposite powders decreased gradually with increasing Y2O3 content, whereas the Hc increased. The saturation magnetic induction and Hc of the Fe-Y2O3 nanocomposite were 1.45 T and 58.9 kA/m, respectively, at a Y2O3 content of 2%. The as-synthesized Fe-Y2O3 nanocomposite powders were densified by pressureless sintering. When the Y2O3 content was low, the nanocomposites could reach a higher relative density at a lower sintering temperature of 700oC. In contrast, densification was difficult to achieve when the Y2O3 content was increased to 1% or 2% even at a high sintering temperature of 1300oC.

Key words:  solution combustion synthesis      Fe-Y2O3 nanocomposite powder      Y2O3 content      microstructure      magnetic property     
Received:  11 March 2022     
ZTFLH:  TG132  
Fund: Natural Science Foundation of Beijing(2224104);Guangdong Basic and Applied Basic Research Foundation(2021A1515110202)
Corresponding Authors:  ZHANG Deyin, Tel:(010)82375859, E-mail: zhangdeyin@ustb.edu.cn
QIN Mingli, professor, Tel:(010)82375859, E-mail: qinml@mater.ustb.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00109     OR     https://www.ams.org.cn/EN/Y2023/V59/I6/757

Fig.1  TG-DSC curves (a, c, e, g, i) and corresponding mass spectrometry (MS) curves (b, d, f, h, j) of gels samples F (a, b), FY0.2 (c, d), FY0.5 (e, f), FY (g, h), and FY2 (i, j) (T—temperature)
Fig.2  XRD spectra of the combustion product with different raw material ratios
Fig.3  SEM images of the combustion product with different raw material ratios
Fig.4  XRD spectra of the reduction products with different raw material ratios
SampleCrystalliteSSABsHc
size / nmm2·g-1TkA·m-1
Fe43 ± 0.29.7 ± 0.21.976.4 ± 0.7
Fe-0.2%Y2O340 ± 0.513.7 ± 0.51.8328.7 ± 0.5
Fe-0.5%Y2O337 ± 0.315.6 ± 0.31.7547.8 ± 0.6
Fe-1%Y2O334 ± 0.419.8 ± 0.51.7151.0 ± 0.4
Fe-2%Y2O333 ± 0.222.6 ± 0.41.4558.9 ± 0.7
Table 1  Crystallite sizes, specific surface areas (SSAs), and room-temperature magnetic properties of Fe-Y2O3 nanocomposites with different Y2O3 contents
Fig.5  XPS spectra (a) and Y3d spectra (b) of the reduction products with different raw material ratios
Fig.6  Low (a, c, e, g, i) and high (b, d, f, h, j) magnified FE-SEM images of the reduction products with different raw material ratios (a, b) F (c, d) FY0.2 (e, f) FY0.5 (g, h) FY (i, j) FY2
Fig.7  Room-temperature magnetic hysteresis loops (a) and local enlargement (b) of the reduction products with different Y2O3 content (B—saturation induction, H—magnetic field)
Fig.8  Curves of the relative densities of Fe-Y2O3 nanocomposites with different Y2O3 contents varying with sintering temperature by pressureless sintering
1 Zhang X F, Harley G, de Jonghe L C. Co-continuous metal-ceramic nanocomposites [J]. Nano Lett., 2005, 5: 1035
pmid: 15943438
2 Fu S R, Yang L J, Li H, et al. Steel fiber-reinforced nonferrous metal matrix composites: A review [J]. Rare Met. Mater. Eng., 2020, 49: 3035
3 Wang H Y, Li C, Li Z G, et al. Current research and future prospect on the preparation and architecture design of nanomaterials reinforced light metal matrix composites [J]. Acta Metall. Sin., 2019, 55: 683
doi: 10.11900/0412.1961.2018.00517
王慧远, 李 超, 李志刚 等. 纳米增强体强化轻合金复合材料制备及构型设计研究进展与展望 [J]. 金属学报, 2019, 55: 683
doi: 10.11900/0412.1961.2018.00517
4 Kota N, Charan M S, Laha T, et al. Review on development of metal/ceramic interpenetrating phase composites and critical analysis of their properties [J]. Ceram. Int., 2022, 48: 1451
doi: 10.1016/j.ceramint.2021.09.232
5 Wang M F, Deng K R, Lü W, et al. Rational design of multifunctional Fe@γ-Fe2O3@H-TiO2 nanocomposites with enhanced magnetic and photoconversion effects for wide applications: From photocatalysis to imaging-guided photothermal cancer therapy [J]. Adv. Mater., 2018, 30: 1706747
doi: 10.1002/adma.v30.13
6 Cai N, Xia S W, Li X Q, et al. Influence of the ratio of Fe/Al2O3 on waste polypropylene pyrolysis for high value-added products [J]. J. Clean. Prod., 2021, 315: 128240
doi: 10.1016/j.jclepro.2021.128240
7 Onderko F, Birčáková Z, Dobák S, et al. Magnetic properties of soft magnetic Fe@SiO2/ferrite composites prepared by wet/dry method [J]. J. Magn. Magn. Mater., 2022, 543: 168640
doi: 10.1016/j.jmmm.2021.168640
8 Ge L F, Wang W, Peng Z L, et al. Facile fabrication of Fe@MgO magnetic nanocomposites for efficient removal of heavy metal ion and dye from water [J]. Powder Technol., 2018, 326: 393
doi: 10.1016/j.powtec.2017.12.003
9 Wei X J, Jiang J T, Zhen L, et al. Synthesis of Fe/SiO2 composite particles and their superior electromagnetic properties in microwave band [J]. Mater. Lett., 2010, 64: 57
doi: 10.1016/j.matlet.2009.10.005
10 Torabinejad V, Aliofkhazraei M, Sabour Rouhaghdam A, et al. Mechanical properties of multilayer Ni-Fe and Ni-Fe-Al2O3 nanocomposite coating [J]. Mater. Sci. Eng., 2017, A700: 448
11 Raghavendra K G, Dasgupta A, Bhaskar P, et al. Synthesis and characterization of Fe-15 wt.% ZrO2 nanocomposite powders by mechanical milling [J]. Powder Technol., 2016, 287: 190
doi: 10.1016/j.powtec.2015.10.003
12 Hirata A, Fujita T, Wen Y R, et al. Atomic structure of nanoclusters in oxide-dispersion-strengthened steels [J]. Nat. Mater., 2011, 10: 922
doi: 10.1038/nmat3150 pmid: 22019943
13 Vijay R, Nagini M, Sarma S S, et al. Structure and properties of Nano-scale oxide-dispersed iron [J]. Metall. Mater. Trans., 2014, 45A: 777
14 Xu Z Y, Song L L, Zhao Y Y, et al. The formation mechanism and effect of amorphous SiO2 on the corrosion behaviour of Fe-Cr-Si ODS alloy in LBE at 550oC [J]. Corros. Sci., 2021, 190: 109634
doi: 10.1016/j.corsci.2021.109634
15 Liu T, Shen H L, Wang C X, et al. Structure evolution of Y2O3 nanoparticle/Fe composite during mechanical milling and annealing [J]. Progr. Nat. Sci.: Mater. Int., 2013, 23: 434
doi: 10.1016/j.pnsc.2013.06.009
16 Ntola P, Friedrich H B, Mahomed A S, et al. Exploring the role of fuel on the microstructure of VO x /MgO powders prepared using solution combustion synthesis [J]. Mater. Chem. Phys., 2022, 287: 125602
17 Xu C X, Manukyan K V, Adams R A, et al. One-step solution combustion synthesis of CuO/Cu2O/C anode for long cycle life Li-ion batteries [J]. Carbon, 2019, 142: 51
doi: 10.1016/j.carbon.2018.10.016
18 Zhang D Y, Qin M L, Huang M, et al. Magnetic properties of evenly mixed Fe-Y2O3 nanocomposites synthesized by a facile wet-chemical based route [J]. J. Magn. Magn. Mater., 2019, 491: 165576
doi: 10.1016/j.jmmm.2019.165576
19 Zhou Q L, Zhou J L, Feng W, et al. Solution combustion synthesis of lithium orthosilicate as the tritium breeder: Effects of microwave power and fuel-to-oxidizer ratio on phase, microstructure and sintering [J]. Ceram. Int., 2021, 47: 22006
doi: 10.1016/j.ceramint.2021.04.219
20 Li F T, Ran J R, Jaroniec M, et al. Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion [J]. Nanoscale, 2015, 7: 17590
doi: 10.1039/C5NR05299H
21 Guo H, Zhang Z X, Jiang Z, et al. Catalytic activity of porous manganese oxides for benzene oxidation improved via citric acid solution combustion synthesis [J]. J. Environ. Sci., 2020, 98: 196
doi: 10.1016/j.jes.2020.06.008
22 Varma A, Mukasyan A S, Rogachev A S, et al. Solution combustion synthesis of nanoscale materials [J]. Chem. Rev., 2016, 116: 14493
pmid: 27610827
23 Rashad M M, Rayan D A, Turky A O, et al. Effect of Co2+ and Y3+ ions insertion on the microstructure development and magnetic properties of Ni0.5Zn0.5Fe2O4 powders synthesized using co-precipitation method [J]. J. Magn. Magn. Mater., 2015, 374: 359
doi: 10.1016/j.jmmm.2014.08.031
24 Sharif M J, Yamauchi M, Toh S, et al. Enhanced magnetization in highly crystalline and atomically mixed bcc Fe-Co nanoalloys prepared by hydrogen reduction of oxide composites [J]. Nanoscale, 2013, 5: 1489
doi: 10.1039/c2nr33467d pmid: 23334346
25 Huang M, Qin M L, Zhang D Y, et al. Facile synthesis of sheet-like Fe/C nanocomposites by a combustion-based method [J]. J. Alloys Compd., 2017, 695: 1870
doi: 10.1016/j.jallcom.2016.11.021
26 Flohrer S, Herzer G. Random and uniform anisotropy in soft magnetic nanocrystalline alloys (invited) [J]. J. Magn. Magn. Mater., 2010, 322: 1511
doi: 10.1016/j.jmmm.2009.07.087
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[10] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[11] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[12] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[13] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[14] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[15] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
No Suggested Reading articles found!