|
|
Additively Manufactured Biodegrabable Metal Implants |
ZHENG Yufeng1( ), XIA Dandan2, SHEN Yunong1, LIU Yunsong2, XU Yuqian2, WEN Peng3, TIAN Yun4, LAI Yuxiao5 |
1.School of Materials Science and Engineering, Peking University, Beijing 100871, China 2.Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, National Medical products Administration Key Laboratory for Dental Materials, Research Center of Engineering and Technology for Digital Dentistry, Ministry of Health, Beijing 100081, China 3.State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China 4.Department of Orthopedics, Peking University Third Hospital, Beijing 100191, China 5.Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China |
|
Cite this article:
ZHENG Yufeng, XIA Dandan, SHEN Yunong, LIU Yunsong, XU Yuqian, WEN Peng, TIAN Yun, LAI Yuxiao. Additively Manufactured Biodegrabable Metal Implants. Acta Metall Sin, 2021, 57(11): 1499-1520.
|
Abstract Additive manufacturing (AM) can produce complicated structures accurately and freely, giving the implant a macro and micro geometry, which makes the implant match the patient's defect site and realize the needs for personalized clinical treatment. Thus, AM provides a new manufacturing method for biodegradable metals. Presently, biodegradable metals are the hotspot issues of metallic biomaterials research. Additively-manufactured biodegradable metals are new research field. In this paper, a comprehensive review on the AM of Mg-, Zn-, and Fe-based biodegradable metals, which focuses on their processes and influencing factors, mechanical properties, biodegradation behavior, and biocompatibility, is given. Finally, the future development trend of the AM biomedical metallic materials is explored.
|
Received: 19 July 2021
|
|
Fund: National Key Research and Development Program of China(2018YFE0104200);National Natural Science Foundation of China(51931001);Open Project of NMPA Key laboratory for Dental Materials(PKUSS20200401);CAS Interdisciplinary Innovation Team(JCTD-2020-19) |
About author: ZHENG Yufeng, professor, Tel: (010)62767411, E-mail: yfzheng@pku.edu.cn
|
1 |
Chimene D, Lennox K K, Kaunas R R, et al. Advanced bioinks for 3D printing: A materials science perspective [J]. Ann. Biomed. Eng., 2016, 44: 2090
|
2 |
Winder J, Cooke R S, Gray J, et al. Medical rapid prototyping and 3D CT in the manufacture of custom made cranial titanium plates [J]. J. Med. Eng. Technol., 1999, 23: 26
|
3 |
Ciocca L, Mazzoni S, Fantini M, et al. CAD/CAM guided secondary mandibular reconstruction of a discontinuity defect after ablative cancer surgery [J]. J. Cranio-Maxillofac. Surg., 2012, 40: E511
|
4 |
Xu N F, Wei F, Liu X G, et al. Reconstruction of the upper cervical spine using a personalized 3D-printed vertebral body in an adolescent with Ewing sarcoma [J]. Spine, 2016, 41: E50
|
5 |
Liang H, Ji T, Zhang Y, et al. Reconstruction with 3D-printed pelvic endoprostheses after resection of a pelvic tumour [J]. Bone Joint J., 2017, 99-B: 267
|
6 |
Kong W D, Wang S F, Wang D, et al. Preliminary study on direct manufacturing of customized lingual brackets by selective laser melting [J]. Laser Technol., 2012, 36: 301
|
|
孔卫东, 王淑范, 王 迪等. 选区激光熔化直接成型个性化舌侧托槽的研究 [J]. 激光技术, 2012, 36: 301
|
7 |
Zangeneh S, Lashgari H R, Roshani A. Microstructure and tribological characteristics of aged Co-28Cr-5Mo-0.3C alloy [J]. Mater. Des., 2012, 37: 292
|
8 |
Koutsoukis T, Zinelis S, Eliades G, et al. Selective laser melting technique of Co-Cr dental alloys: A review of structure and properties and comparative analysis with other available techniques [J]. J. Prosthodont., 2015, 24: 303
|
9 |
Nagels J, Stokdijk M, Rozing P M. Stress shielding and bone resorption in shoulder arthroplasty [J]. J. Shoulder Elbow Surg., 2003, 12: 35
|
10 |
Shadanbaz S, Dias G J. Calcium phosphate coatings on magnesium alloys for biomedical applications: A review [J]. Acta Biomater., 2012, 8: 20
|
11 |
Sansone V, Pagani D, Melato M. The effects on bone cells of metal ions released from orthopaedic implants. A review [J]. Clin. Cases Miner. Bone Metab., 2013, 10: 34
|
12 |
Zheng Y F, Gu X N, Witte F. Biodegradable metals [J]. Mater. Sci. Eng., 2014, R77: 1
|
13 |
Liu Y, Zheng Y F, Chen X H, et al. Fundamental theory of biodegradable metals-definition, criteria, and design [J]. Adv. Funct. Mater., 2019, 29: 1805402
|
14 |
Manore M M, Meacham S L. New dietary reference intakes set for energy, carbohydrates, fiber, fat, fatty acids, cholesterol, proteins, and amino acids [J]. Acsms Health Fitness J., 2003, 7: 25
|
15 |
Kraus T, Moszner F, Fischerauer S, et al. Biodegradable Fe-based alloys for use in osteosynthesis: Outcome of an in vivo study after 52 weeks [J]. Acta Biomater., 2014, 10: 3346
|
16 |
He J, He F L, Li D W, et al. Advances in Fe-based biodegradable metallic materials [J]. RSC Adv., 2016, 6: 112819
|
17 |
Gorejová R, Haverová L, Oriňaková R, et al. Recent advancements in Fe-based biodegradable materials for bone repair [J]. J. Mater. Sci., 2019, 54: 1913
|
18 |
De Baaij J H F, Hoenderop J G J, Bindels R J M. Magnesium in man: Implications for health and disease [J]. Physiol. Rev., 2015, 95: 1
|
19 |
Zhang Y F, Xu J K, Ruan Y C, et al. Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats [J]. Nat. Med., 2016, 22: 1160
|
20 |
Bai L, Gong C, Chen X H, et al. Additive manufacturing of customized metallic orthopedic implants: Materials, structures, and surface modifications [J]. Metals, 2019, 9: 1004
|
21 |
Kabir H, Munir K, Wen C E, et al. Recent research and progress of biodegradable zinc alloys and composites for biomedical applications: Biomechanical and biocorrosion perspectives [J]. Bioact. Mater., 2021, 6: 836
|
22 |
Dhavalikar P, Lan Z Y, Kar R, et al. Biomedical applications of additive manufacturing [A]. Biomaterials Science [M]. 4th Ed., Amsterdam: Academic Press, 2020: 623
|
23 |
DebRoy T, Wei H L, Zuback J S, et al. Additive manufacturing of metallic components—Process, structure and properties [J]. Prog. Mater. Sci., 2018, 92: 112
|
24 |
Qin Y, Wen P, Guo H, et al. Additive manufacturing of biodegradable metals: Current research status and future perspectives [J]. Acta Biomater., 2019, 98: 3
|
25 |
Yin B Z, Qin Y, Wen P, et al. Laser powder bed fusion for fabrication of metal orthopedic implants [J]. Chin. J. Lasers, 2020, 47: 1100001
|
|
尹浜兆, 秦 瑜, 温 鹏等. 激光粉末床熔融制备金属骨植入物 [J]. 中国激光, 2020, 47: 1100001
|
26 |
Gu D D, Meiners W, Wissenbach K, et al. Laser additive manufacturing of metallic components: Materials, processes and mechanisms [J]. Int. Mater. Rev., 2012, 57: 133
|
27 |
Wauthle R, Ahmadi S M, Yavari S A, et al. Revival of pure titanium for dynamically loaded porous implants using additive manufacturing [J]. Mater. Sci. Eng., 2015, C54: 94
|
28 |
Bobbert F S L, Lietaert K, Eftekhari A A, et al. Additively manufactured metallic porous biomaterials based on minimal surfaces: A unique combination of topological, mechanical, and mass transport properties [J]. Acta Biomater., 2017, 53: 572
|
29 |
Yan C Z, Hao L, Hussein A, et al. Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting [J]. Mater. Des., 2014, 55: 533
|
30 |
Wauthle R, Van Der Stok J, Yavari S A, et al. Additively manufactured porous tantalum implants [J]. Acta Biomater., 2015, 14: 217
|
31 |
Elahinia M, Moghaddam N S, Andani M T, et al. Fabrication of Ni-Ti through additive manufacturing: A review [J]. Prog. Mater. Sci., 2016, 83: 630
|
32 |
Niinomi M. Mechanical biocompatibilities of titanium alloys for biomedical applications [J]. J. Mech. Behav. Biomed. Mater., 2008, 130
|
33 |
Lowther M, Louth S, Davey A, et al. Clinical, industrial, and research perspectives on powder bed fusion additively manufactured metal implants [J]. Addit. Manuf., 2019, 28: 565
|
34 |
Fan H B, Fu J, Li X D, et al. Implantation of customized 3-D printed titanium prosthesis in limb salvage surgery: A case series and review of the literature [J]. World J. Surg. Oncol., 2015, 13: 308
|
35 |
Lu M X, Li Y J, Luo Y, et al. Uncemented three-dimensional-printed prosthetic reconstruction for massive bone defects of the proximal tibia [J]. World J. Surg. Oncol., 2018, 16: 47
|
36 |
|
37 |
Ford S, Despeisse M. Additive manufacturing and sustainability: An exploratory study of the advantages and challenges [J]. J. Clean. Prod., 2016, 137: 1573
|
38 |
Wang S S, Wang W, Li Y, et al. Short-term efficacy of 3D printed titanium trabecular metal total hip arthroplasty [J]. Chin. J. Cancer Prev. Treat., 2016, 23(suppl.1): 204
|
|
王姗姗, 王 伟, 李 岩等. 3D打印钛合金骨小梁金属臼杯全髋关节置换术的短期疗效 [J]. 中华肿瘤防治杂志, 2016, 23(): 204
|
39 |
Wang B C, Hao Y Q, Pu F F, et al. Computer-aided designed, three dimensional-printed hemipelvic prosthesis for peri-acetabular malignant bone tumour [J]. Int. Orthop., 2018, 42: 687
|
40 |
Xia R Z, Zhai Z J, Chang Y Y, et al. Clinical applications of 3-dimensional printing technology in hip joint [J]. Orthop. Surg., 2019, 11: 533
|
41 |
Ye K, Wang J W, Hu Z G, et al. Biomechanical properties of a titanium alloy pelvic prosthesis individually manufactured by 3D printing: A finite element analysis [J]. Chin. J. Orthop. Trauma, 2015, 17: 18
|
|
叶 堃, 王金武, 胡志刚等. 3D打印钛合金个性化骨盆假体生物力学的初步有限元分析 [J]. 中华创伤骨科杂志, 2015, 17: 18
|
42 |
Ning J P, Wu W D, Tan Q, et al. Application of patient-specific drill template in the thoracic and cervical pedicle screw implantation: A clinical study [J]. J. Pract. Orthop., 2015, 21: 385
|
|
宁金沛, 吴卫东, 覃 求等. 3D打印个体化导航模板在胸椎和颈椎椎弓根螺钉植入的临床应用 [J]. 实用骨科杂志, 2015, 21: 385
|
43 |
Mangano F G, Cirotti B, Sammons R L, et al. Custom-made, root-analogue direct laser metal forming implant: A case report [J]. Lasers Med. Sci., 2012, 27: 1241
|
44 |
Zhu B B, Ba J W, Zheng J, et al. Study on splicing composite forming foundation process of selective laser melting [J]. Appl. Laser, 2016, 36: 663
|
|
祝彬彬, 巴劲伟, 郑 军等. 选区激光熔化拼接复合成型基础工艺研究 [J]. 应用激光, 2016, 36: 663
|
45 |
Liu Y F, Wang W N, Yu H, et al. Study on the fit of titanium alloy removable partial denture framework fabricated by selective laser melting [J]. J. Pract. Stomatol., 2017, 33: 302
|
|
刘一帆, 王伟娜, 于 海等. 选择性激光熔覆(SLM)钛合金可摘局部义齿支架的适合性研究 [J]. 实用口腔医学杂志, 2017, 33: 302
|
46 |
Hu F, Pei Z H, Wen Y. Using intraoral scanning technology for three-dimensional printing of Kennedy class I removable partial denture metal framework: A clinical report [J]. J. Prosthodont., 2019, 28: e473
|
47 |
Sing S L, An J, Yeong W Y, et al. Laser and electron-beam powder-bed additive manufacturing of metallic implants: A review on processes, materials and designs [J]. J. Orthop. Res., 2016, 34: 369
|
48 |
Brunello G, Sivolella S, Meneghello R, et al. Powder-based 3D printing for bone tissue engineering [J]. Biotechnol. Adv., 2016, 34: 740
|
49 |
Xin X Z, Xiang N, Chen J, et al. Electrochemical-corrosion behavior of dental cobalt-chromium alloy fabricated by selective laser melting technique [J]. J. Shanghai Jiaotong Univ. (Med. Sci.), 2012, 32: 602
|
|
忻贤贞, 项 楠, 陈 洁等. 选择性激光熔化技术制作牙科钴铬合金的电化学腐蚀性能研究 [J]. 上海交通大学学报(医学版), 2012, 32: 602
|
50 |
Guo M, Zheng Y F. Manufacture technique and clinical application of porous tantalum implant in orthopaedic surgery [J]. Chin. Orthop. J. Clin. Basic Res., 2013, 5: 47
|
|
郭 敏, 郑玉峰. 多孔钽材料制备及其骨科植入物临床应用现状 [J]. 中国骨科临床与基础研究杂志, 2013, 5: 47
|
51 |
Bermúdez M D, Carrión F J, Martínez-Nicolás G, et al. Erosion-corrosion of stainless steels, titanium, tantalum and zirconium [J]. Wear, 2005, 258: 693
|
52 |
Kato H, Nakamura T, Nishiguchi S, et al. Bonding of alkali- and heat-treated tantalum implants to bone [J]. J. Biomed. Mater. Res., 2000, 53: 28
|
53 |
Patil N, Goodman S B. The use of porous tantalum for reconstructing bone loss in orthopedic surgery [A]. Advances in Metallic Biomaterials [C]. Berlin, Heidelberg: Springer, 2015: 223
|
54 |
Yang K, Tang H P, Wang J, et al. Research development of standardized and addtively manufactured custom-made porous tantalum implant [J]. Hot Working Technol., 2017, 46(22): 5
|
|
杨 坤, 汤慧萍, 王 建等. 标准化和增材制造个性化多孔钽植入体的研究进展 [J]. 热加工工艺, 2017, 46(22): 5
|
55 |
Balla V K, Bodhak S, Bose S, et al. Porous tantalum structures for bone implants: Fabrication, mechanical and in vitro biological properties [J]. Acta Biomater., 2010, 6: 3349
|
56 |
Li Y G, Jahr H, Zhou J, et al. Additively manufactured biodegradable porous metals [J]. Acta Biomater., 2020, 115: 29
|
57 |
Yao N N, Peng X H. The preparation method of metal powder for 3D printing [J]. Sichuan Nonferrous Met., 2013, (4): 48
|
|
姚妮娜, 彭雄厚. 3D打印金属粉末的制备方法 [J]. 四川有色金属, 2013, (4): 48
|
58 |
Wang Y C, Fu P H, Wang N Q, et al. Challenges and solutions for the additive manufacturing of biodegradable magnesium implants [J]. Engineering, 2020, 6: 1267
|
59 |
Wen P, Voshage M, Jauer L, et al. Laser additive manufacturing of Zn metal parts for biodegradable applications: Processing, formation quality and mechanical properties [J]. Mater. Des., 2018, 155: 36
|
60 |
Liu C, Zhang M, Chen C J. Effect of laser processing parameters on porosity, microstructure and mechanical properties of porous Mg-Ca alloys produced by laser additive manufacturing [J]. Mater. Sci. Eng., 2017, A703: 359
|
61 |
Wei K W, Zeng X Y, Wang Z M, et al. Selective laser melting of Mg-Zn binary alloys: Effects of Zn content on densification behavior, microstructure, and mechanical property [J]. Mater. Sci. Eng., 2019, A756: 226
|
62 |
Hu D, Wang Y, Zhang D F, et al. Experimental investigation on selective laser melting of bulk net-shape pure magnesium [J]. Mater. Manuf. Processes, 2015, 30: 1298
|
63 |
Demir A G, Monguzzi L, Previtali B. Selective laser melting of pure Zn with high density for biodegradable implant manufacturing [J]. Addit. Manuf., 2017, 15: 20
|
64 |
Shuai C J, Zhou Y Z, Yang Y W, et al. Biodegradation resistance and bioactivity of hydroxyapatite enhanced Mg-Zn composites via selective laser melting [J]. Materials (Basel), 2017, 10: 307
|
65 |
Karunakaran R, Ortgies S, Tamayol A, et al. Additive manufacturing of magnesium alloys [J]. Bioact. Mater., 2020, 5: 44
|
66 |
Esmaily M, Zeng Z, Mortazavi A N, et al. A detailed microstructural and corrosion analysis of magnesium alloy WE43 manufactured by selective laser melting [J]. Addit. Manuf., 2020, 35: 101321
|
67 |
Leung C L A, Marussi S, Atwood R C, et al. In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing [J]. Nat. Commun., 2018, 9: 1355
|
68 |
Leung C L A, Marussi S, Towrie M, et al. The effect of powder oxidation on defect formation in laser additive manufacturing [J]. Acta Mater., 2019, 166: 294
|
69 |
Grasso M, Demir A G, Previtali B, et al. In situ monitoring of selective laser melting of zinc powder via infrared imaging of the process plume [J]. Robot. Comput. Integr. Manuf., 2018, 49: 229
|
70 |
King W E, Anderson A T, Ferencz R M, et al. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges [J]. Appl. Phys. Rev., 2015, 2: 041304
|
71 |
Zadpoor A A. Additively manufactured porous metallic biomaterials [J]. J. Mat. Chem., 2019, 7B: 4088
|
72 |
Deshpande V S, Ashby M F, Fleck N A. Foam topology: Bending versus stretching dominated architectures [J]. Acta Mater., 2001, 49: 1035
|
73 |
Montazerian H, Davoodi E, Asadi-Eydivand M, et al. Porous scaffold internal architecture design based on minimal surfaces: A compromise between permeability and elastic properties [J]. Mater. Des., 2017, 126: 98
|
74 |
Lietaert K, Zadpoor A A, Sonnaert M, et al. Mechanical properties and cytocompatibility of dense and porous Zn produced by laser powder bed fusion for biodegradable implant applications [J]. Acta Biomater., 2020, 110: 289
|
75 |
Li Y, Jahr H, Zhang X Y, et al. Biodegradation-affected fatigue behavior of additively manufactured porous magnesium [J]. Addit. Manuf., 2019, 28: 299
|
76 |
Li Y, Li W, Bobbert F S L, et al. Corrosion fatigue behavior of additively manufactured biodegradable porous zinc [J]. Acta Biomater., 2020, 106: 439
|
77 |
Li Y, Lietaert K, Li W, et al. Corrosion fatigue behavior of additively manufactured biodegradable porous iron [J]. Corros. Sci., 2019, 156: 106
|
78 |
Li Y, Zhou J, Pavanram P, et al. Additively manufactured biodegradable porous magnesium [J]. Acta Biomater., 2018, 67: 378
|
79 |
Li Y, Pavanram P, Zhou J, et al. Additively manufactured biodegradable porous zinc [J]. Acta Biomater., 2020, 101: 609
|
80 |
Li Y, Jahr H, Lietaert K, et al. Additively manufactured biodegradable porous iron [J]. Acta Biomater., 2018, 77: 380
|
81 |
Li Y, Pavanram P, Zhou J, et al. Additively manufactured functionally graded biodegradable porous zinc [J]. Biomater. Sci., 2020, 8: 2404
|
82 |
Li Y, Jahr H, Pavanram P, et al. Additively manufactured functionally graded biodegradable porous iron [J]. Acta Biomater., 2019, 96: 646
|
83 |
Wang X J, Xu S Q, Zhou S W, et al. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review [J]. Biomaterials, 2016, 83: 127
|
84 |
Liu Y J, Li X P, Zhang L C, et al. Processing and properties of topologically optimised biomedical Ti-24Nb-4Zr-8Sn scaffolds manufactured by selective laser melting [J]. Mater. Sci. Eng., 2015, A642: 268
|
85 |
Dumas M, Terriault P, Brailovski V. Modelling and characterization of a porosity graded lattice structure for additively manufactured biomaterials [J]. Mater. Des., 2017, 121: 383
|
86 |
Zargarian A, Esfahanian M, Kadkhodapour J, et al. Numerical simulation of the fatigue behavior of additive manufactured titanium porous lattice structures [J]. Mater. Sci. Eng., 2016, C60: 339
|
87 |
Dias M R, Guedes J M, Flanagan C L, et al. Optimization of scaffold design for bone tissue engineering: A computational and experimental study [J]. Med. Eng. Phys., 2014, 36: 448
|
88 |
Bucklen B S, Wettergreen W A, Yuksel E, et al. Bone-derived CAD library for assembly of scaffolds in computer-aided tissue engineering [J]. Virtual Phys. Prototyp., 2008, 3: 13
|
89 |
Johnson N S, Vulimiri P S, To A C, et al. Invited review: Machine learning for materials developments in metals additive manufacturing [J]. Addit. Manuf., 2020, 36: 101641
|
90 |
Benn F, Kröger N, Zinser M, et al. Influence of surface condition on the degradation behaviour and biocompatibility of additively manufactured WE43 [J]. Mater. Sci. Eng., 2021, C124: 112016
|
91 |
Walter R, Kannan M B, He Y, et al. Effect of surface roughness on the in vitro degradation behaviour of a biodegradable magnesium-based alloy [J]. Appl. Surf. Sci., 2013, 279: 343
|
92 |
Cox S C, Jamshidi P, Eisenstein N M, et al. Surface finish has a critical influence on biofilm formation and mammalian cell attachment to additively manufactured prosthetics [J]. ACS Biomater. Sci. Eng., 2017, 3: 1616
|
93 |
Liu L, Huang B, Liu X M, et al. Photo-controlled degradation of PLGA/Ti3C2 hybrid coating on Mg-Sr alloy using near infrared light [J]. Bioact. Mater., 2021, 6: 568
|
94 |
Yuan W, Xia D D, Zheng Y F, et al. Controllable biodegradation and enhanced osseointegration of ZrO2-nanofilm coated Zn-Li alloy: In vitro and in vivo studies [J]. Acta Biomater., 2020, 105: 290
|
95 |
Huang L, Li J, Yuan W, et al. Near-infrared light controlled fast self-healing protective coating on magnesium alloy [J]. Corros. Sci., 2020, 163: 108257
|
96 |
Yuan W, Li B, Chen D F, et al. Formation mechanism, corrosion behavior, and cytocompatibility of microarc oxidation coating on absorbable high-purity zinc [J]. ACS Biomater. Sci. Eng., 2019, 5: 487
|
97 |
Kopp A, Derra T, Müether M, et al. Influence of design and postprocessing parameters on the degradation behavior and mechanical properties of additively manufactured magnesium scaffolds [J]. Acta Biomater., 2019, 98: 23
|
98 |
Yang C, Huan Z G, Wang X Y, et al. 3D printed Fe scaffolds with HA nanocoating for bone regeneration [J]. ACS Biomater. Sci. Eng., 2018, 4: 608
|
99 |
Wu M W, Chen J K, Lin B H, et al. Improved fatigue endurance ratio of additive manufactured Ti-6Al-4V lattice by hot isostatic pressing [J]. Mater. Des., 2017, 134: 163
|
100 |
Wauthle R, Vrancken B, Beynaerts B, et al. Effects of build orientation and heat treatment on the microstructure and mechanical properties of selective laser melted Ti6Al4V lattice structures [J]. Addit. Manuf., 2015, 5: 77
|
101 |
Gangireddy S, Gwalani B, Liu K M, et al. Microstructure and mechanical behavior of an additive manufactured (AM) WE43-Mg alloy [J]. Addit. Manuf., 2019, 26: 53
|
102 |
Elmer J W, Allen S M, Eagar T W. Microstructural development during solidification of stainless steel alloys [J]. Metall. Trans., 1989, 20A: 2117
|
103 |
Hosseini E, Popovich V A. A review of mechanical properties of additively manufactured Inconel 718 [J]. Addit. Manuf., 2019, 30: 100877
|
104 |
Seitz J M, Lucas A, Kirschner M. Magnesium-based compression screws: A novelty in the clinical use of implants [J]. JOM, 2016, 68: 1177
|
105 |
Lee J W, Han H S, Han K J, et al. Long-term clinical study and multiscale analysis of in vivo biodegradation mechanism of Mg alloy [J]. Proc. Natl. Acad. Sci. USA, 2016, 113: 716
|
106 |
Zhao D W, Witte F, Lu F Q, et al. Current status on clinical applications of magnesium-based orthopaedic implants: A review from clinical translational perspective [J]. Biomaterials, 2017, 112: 287
|
107 |
Schinhammer M, Häenzi A C, Löeffler J F, et al. Design strategy for biodegradable Fe-based alloys for medical applications [J]. Acta Biomater., 2010, 6: 1705
|
108 |
Li H F, Zheng Y F, Qin L. Progress of biodegradable metals [J]. Progr. Nat. Sci. Mater. Int., 2014, 24: 414
|
109 |
Ng C C, Savalani M M, Man H C, et al. Layer manufacturing of magnesium and its alloy structures for future applications [J]. Virtual Phys. Prototyp., 2010, 5: 13
|
110 |
Zhang B C, Liao H L, Coddet C. Effects of processing parameters on properties of selective laser melting Mg-9%Al powder mixture [J]. Mater. Des., 2012, 34: 753
|
111 |
Chou D T, Wells D, Hong D, et al. Novel processing of iron-manganese alloy-based biomaterials by inkjet 3-D printing [J]. Acta Biomater., 2013, 9: 8593
|
112 |
Song B, Dong S J, Deng S H, et al. Microstructure and tensile properties of iron parts fabricated by selective laser melting [J]. Opt. Laser Technol., 2014, 56: 451
|
113 |
Jauer L, Jülich B, Voshage M, et al. Selective laser melting of magnesium alloys [J]. Eur. Cells Mater., 2015, 30(suppl.3): 1
|
114 |
Jauer L, Kimm M, Meiners W, et al. Additive manufacturing of magnesium alloys [A]. 9th Symposium on Biodegradable Metals[C]. Bertinoro, Italy, 2017: 10
|
115 |
Wen P, Jauer L, Voshage M, et al. Densification behavior of pure Zn metal parts produced by selective laser melting for manufacturing biodegradable implants [J]. J. Mater. Process. Technol., 2018, 258: 128
|
116 |
Qin Y, Wen P, Voshage M, et al. Additive manufacturing of biodegradable Zn-xWE43 porous scaffolds: Formation quality, microstructure and mechanical properties [J]. Mater. Des., 2019, 181: 107937
|
117 |
Wen P, Qin Y, Chen Y Z, et al. Laser additive manufacturing of Zn porous scaffolds: Shielding gas flow, surface quality and densification [J]. J. Mater. Sci. Technol., 2019, 35: 368
|
118 |
Carluccio D, Xu C, Venezuela J, et al. Additively manufactured iron-manganese for biodegradable porous load-bearing bone scaffold applications [J]. Acta Biomater., 2020, 103: 346
|
119 |
Qin Y, Wen P, Xia D D, et al. Effect of grain structure on the mechanical properties and in vitro corrosion behavior of additively manufactured pure Zn [J]. Addit. Manuf., 2020, 33: 101134
|
120 |
Hyer H, Zhou L, Liu Q Y, et al. High strength WE43 microlattice structures additively manufactured by laser powder bed fusion [J]. Materialia, 2021, 16: 101067
|
121 |
Nie Y, Chen G, Peng H B, et al. In vitro and 48 weeks in vivo performances of 3D printed porous Fe-30Mn biodegradable scaffolds [J]. Acta Biomater., 2021, 121: 724
|
122 |
Montani M, Demir A G, Mostaed E, et al. Processability of pure Zn and pure Fe by SLM for biodegradable metallic implant manufacturing [J]. Rapid Prototyp. J., 2017, 23: 514
|
123 |
Song B, Dong S J, Liu Q, et al. Vacuum heat treatment of iron parts produced by selective laser melting: Microstructure, residual stress and tensile behavior [J]. Mater. Des., 2014, 54: 727
|
124 |
Shuai C J, Yang Y W, Wu P, et al. Laser rapid solidification improves corrosion behavior of Mg-Zn-Zr alloy [J]. J. Alloys Compd., 2017, 691: 961
|
125 |
Zumdick N A, Jauer L, Kersting L C, et al. Additive manufactured WE43 magnesium: A comparative study of the microstructure and mechanical properties with those of powder extruded and as-cast WE43 [J]. Mater. Charact., 2019, 147: 384
|
126 |
Pawlak A, Rosienkiewicz M, Chlebus E. Design of experiments approach in AZ31 powder selective laser melting process optimization [J]. Arch. Civil Mech. Eng., 2017, 17: 9
|
127 |
Deng Q C, Wu Y J, Luo Y H, et al. Fabrication of high-strength Mg-Gd-Zn-Zr alloy via selective laser melting [J]. Mater. Charact., 2020, 165: 110377
|
128 |
Yang Y W, Yuan F L, Gao C D, et al. A combined strategy to enhance the properties of Zn by laser rapid solidification and laser alloying [J]. J. Mech. Behav. Biomed. Mater., 2018, 82: 51
|
129 |
Kasperovich G, Hausmann J. Improvement of fatigue resistance and ductility of TiAl6V4 processed by selective laser melting [J]. J. Mater. Process. Technol., 2015, 220: 202
|
130 |
Wu L, Zhu H T, Gai X Y, et al. Evaluation of the mechanical properties and porcelain bond strength of cobalt-chromium dental alloy fabricated by selective laser melting [J]. J. Prosthet. Dent., 2014, 111: 51
|
131 |
Wei K W, Gao M, Wang Z M, et al. Effect of energy input on formability, microstructure and mechanical properties of selective laser melted AZ91D magnesium alloy [J]. Mater. Sci. Eng., 2014, A611: 212
|
132 |
Takaichi A, Suyalatu N, Nakamoto T, et al. Microstructures and mechanical properties of Co-29Cr-6Mo alloy fabricated by selective laser melting process for dental applications [J]. J. Mech. Behav. Biomed. Mater., 2013, 21: 67
|
133 |
Guan K, Wang Z M, Gao M, et al. Effects of processing parameters on tensile properties of selective laser melted 304 stainless steel [J]. Mater. Des., 2013, 50: 581
|
134 |
Spierings A B, Herres N, Levy G. Influence of the particle size distribution on surface quality and mechanical properties in AM steel parts [J]. Rapid Prototyp. J., 2011, 17: 195
|
135 |
Hollander D A, von Walter M, Wirtz T, et al. Structural, mechanical and in vitro characterization of individually structured Ti-6Al-4V produced by direct laser forming [J]. Biomaterials, 2006, 27: 955
|
136 |
Liu S, Yang W S, Shi X, et al. Influence of laser process parameters on the densification, microstructure, and mechanical properties of a selective laser melted AZ61 magnesium alloy [J]. J. Alloys Compd., 2019, 808: 151160
|
137 |
Shuai C J, Liu L, Zhao M C, et al. Microstructure, biodegradation, antibacterial and mechanical properties of ZK60-Cu alloys prepared by selective laser melting technique [J]. J. Mater Sci. Technol., 2018, 34: 1944
|
138 |
Hutmacher D W. Scaffolds in tissue engineering bone and cartilage [J]. Biomaterials, 2000, 21: 2529
|
139 |
Wu S L, Liu X M, Yeung K W K, et al. Biomimetic porous scaffolds for bone tissue engineering [J]. Mater. Sci. Eng., 2014, R80: 1
|
140 |
Zhou Y Z, Wu P, Yang Y W, et al. The microstructure, mechanical properties and degradation behavior of laser-melted Mg-Sn alloys [J]. J. Alloys Compd., 2016, 687: 109
|
141 |
Venezuela J, Dargusch M S. The influence of alloying and fabrication techniques on the mechanical properties, biodegradability and biocompatibility of zinc: A comprehensive review [J]. Acta Biomater., 2019, 87: 1
|
142 |
Morgan E F, Keaveny T M. Dependence of yield strain of human trabecular bone on anatomic site [J]. J. Biomech., 2001, 34: 569
|
143 |
Ahmadi S M, Kumar R, Borisov E V, et al. From microstructural design to surface engineering: A tailored approach for improving fatigue life of additively manufactured meta-biomaterials [J]. Acta Biomater., 2019, 83: 153
|
144 |
Hong D, Chou D T, Velikokhatnyi O I, et al. Binder-jetting 3D printing and alloy development of new biodegradable Fe-Mn-Ca/Mg alloys [J]. Acta Biomater., 2016, 45: 375
|
145 |
Shuai C J, Xue L F, Gao C D, et al. Selective laser melting of Zn-Ag alloys for bone repair: Microstructure, mechanical properties and degradation behaviour [J]. Virtual Phys. Prototyp., 2018, 13: 146
|
146 |
Ralston K D, Birbilis N, Davies C H J. Revealing the relationship between grain size and corrosion rate of metals [J]. Scr. Mater., 2010, 63: 1201
|
147 |
Lu Y, Bradshaw A R, Chiu Y L, et al. Effects of secondary phase and grain size on the corrosion of biodegradable Mg-Zn-Ca alloys [J]. Mater. Sci. Eng, 2015, C48: 480
|
148 |
Zhou W, Shen T, Aung N N. Effect of heat treatment on corrosion behaviour of magnesium alloy AZ91D in simulated body fluid [J]. Corros. Sci., 2010, 52: 1035
|
149 |
Gao C D, Li S, Liu L, et al. Dual alloying improves the corrosion resistance of biodegradable Mg alloys prepared by selective laser melting [J]. J. Magnes. Alloy., 2021, 9: 305
|
150 |
Guo Y X, Zhao M C, Xie B, et al. In vitro corrosion resistance and antibacterial performance of novel Fe-xCu biomedical alloys prepared by selective laser melting [J]. Adv. Eng. Mater., 2021, 23: 2001000
|
151 |
Shuai C J, Yang W J, Yang Y W, et al. Selective laser melted Fe-Mn bone scaffold: Microstructure, corrosion behavior and cell response [J]. Mater. Res. Express, 2020, 7: 015404
|
152 |
Gao C D, Yao M, Li S, et al. Highly biodegradable and bioactive Fe-Pd-bredigite biocomposites prepared by selective laser melting [J]. J. Adv. Res., 2019, 20: 91
|
153 |
Nie F L, Zheng Y F, Wei S C, et al. In vitro corrosion, cytotoxicity and hemocompatibility of bulk nanocrystalline pure iron [J]. Biomed. Mater., 2010, 5: 065015
|
154 |
Sunil B R, Kumar A A, Kumar T S S, et al. Role of biomineralization on the degradation of fine grained AZ31 magnesium alloy processed by groove pressing [J]. Mater. Sci. Eng., 2013, C33: 1607
|
155 |
Saha P, Roy M, Datta M K, et al. Effects of grain refinement on the biocorrosion and in vitro bioactivity of magnesium [J]. Mater. Sci. Eng., 2015, C57: 294
|
156 |
Van Bael S, Chai Y C, Truscello S, et al. The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds [J]. Acta Biomater., 2012, 8: 2824
|
157 |
Taniguchi N, Fujibayashi S, Takemoto M, et al. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment [J]. Mater. Sci. Eng., 2016, C59: 690
|
158 |
Zadpoor A A. Bone tissue regeneration: The role of scaffold geometry [J]. Biomater. Sci., 2015, 3: 231
|
159 |
Ferreira L, Karp J M, Nobre L, et al. New opportunities: The use of nanotechnologies to manipulate and track stem cells [J]. Cell Stem Cell, 2008, 3: 136
|
160 |
McMurray R J, Gadegaard N, Tsimbouri P M, et al. Nanoscale surfaces for the long-term maintenance of mesenchymal stem cell phenotype and multipotency [J]. Nat. Mater., 2011, 10: 637
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|