|
|
Fabrication of Mg-Based Composites Reinforced by SiC Whisker Scaffolds with Three-Dimensional Interpenetrating-Phase Architecture and Their Mechanical Properties |
GU Ruicheng1,2, ZHANG Jian2, ZHANG Mingyang2, LIU Yanyan2, WANG Shaogang3, JIAO Da2, LIU Zengqian2( ), ZHANG Zhefeng2( ) |
1.Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China 2.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 3.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
|
Cite this article:
GU Ruicheng, ZHANG Jian, ZHANG Mingyang, LIU Yanyan, WANG Shaogang, JIAO Da, LIU Zengqian, ZHANG Zhefeng. Fabrication of Mg-Based Composites Reinforced by SiC Whisker Scaffolds with Three-Dimensional Interpenetrating-Phase Architecture and Their Mechanical Properties. Acta Metall Sin, 2022, 58(7): 857-867.
|
Abstract Mg and Mg alloys, as important lightweight metal materials, have attracted great attention due to their excellent properties, such as low density, high specific strength, and good damping properties; however, their extensive applications are strictly limited by their low strength. The strength of Mg and Mg alloys can be effectively increased by introducing reinforcement phases into their matrices, i.e., via fabricating Mg-based composites. Nevertheless, the mechanical properties of Mg-based composites demonstrate a strong dependence on their microstructures. Here, new Mg-based composites reinforced by SiC whisker scaffolds with three-dimensional interpenetrating-phase architecture were fabricated through pressureless infiltration of the melt of pure Mg or AZ91D Mg alloy into the porous scaffolds of SiC whiskers. These whiskers were preferentially stacked in-plane within lamellae in the composites using gravity-assisted sedimentation and subsequent densification during the fabrication process. The microstructures and mechanical properties of the composites, particularly their fracture toughness, were characterized and analyzed. The wettability between the SiC whisker scaffolds and the melt was improved by introducing surface reactions between them which was accomplished by a pre-oxidation treatment of the scaffolds before infiltration. The pre-oxidation temperature was adjusted to ensure an adequate filling of the scaffolds without voids while avoiding the formation of excessive reaction products. The resulting composites exhibited a high flexural strength with a certain extent of fracture toughness as evidenced by stable crack propagation with rising R-curve behavior. In comparison to pure Mg, the composites infiltrated with AZ91D Mg alloy as the matrix contained a larger amount of coarsened precipitates, resulting in apparent brittleness despite increased strength.
|
Received: 24 June 2021
|
|
Fund: National Key Research and Development Program of China(2020YFA0710404);National Natural Science Foundation of China(52173269);National Natural Science Foundation of China(51871216);National Natural Science Foundation of China(52101160);Liaoning Revitalization Talents Program(XLYC1907058);Youth Innovation Promotion Association(2019191) |
1 |
Cole G S, Sherman A M. Light weight materials for automotive applications [J]. Mater. Charact., 1995, 35: 3
doi: 10.1016/1044-5803(95)00063-1
|
2 |
Luo A, Pekguleryuz M O. Cast magnesium alloys for elevated temperature applications [J]. J. Mater. Sci., 1994, 29: 5259
doi: 10.1007/BF01171534
|
3 |
Aghion E, Bronfin B. Magnesium alloys development towards the 21st century [J]. Mater. Sci. Forum, 2000, 350-351: 19
doi: 10.4028/www.scientific.net/MSF.350-351.19
|
4 |
Mordike B L, Ebert T. Magnesium: Properties-applications-potential [J]. Mater. Sci. Eng., 2001, A302: 37
|
5 |
Száraz Z, Trojanová Z, Cabbibo M, et al. Strengthening in a WE54 magnesium alloy containing SiC particles [J]. Mater. Sci. Eng., 2007, A462: 225
|
6 |
Ferkel H, Mordike B L. Magnesium strengthened by SiC nanoparticles [J]. Mater. Sci. Eng., 2001, A298: 193
|
7 |
Chen L Y, Xu J Q, Choi H, et al. Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles [J]. Nature, 2015, 528: 539
doi: 10.1038/nature16445
|
8 |
Gupta M, Wong W L E. Magnesium-based nanocomposites: Lightweight materials of the future [J]. Mater. Charact., 2015, 105: 30
doi: 10.1016/j.matchar.2015.04.015
|
9 |
Tian Y, Wu P P, Xiao L, et al. Technological advances in fabrication of magnesium matrix composites [J]. Mater. Rev., 2016, 30(19): 32
|
|
田 莹, 吴萍萍, 肖 旅 等. 镁基复合材料的制备技术进展 [J]. 材料导报, 2016, 30(19): 32
|
10 |
Ye H Z, Liu X Y. Review of recent studies in magnesium matrix composites [J]. J. Mater. Sci., 2004, 39: 6153
doi: 10.1023/B:JMSC.0000043583.47148.31
|
11 |
Ma G H, Xiao H, Ye J, et al. Research status and development of magnesium matrix composites [J]. Mater. Sci. Technol., 2020, 36: 645
doi: 10.1080/02670836.2020.1732610
|
12 |
Lu L, Lim C Y H, Yeong W M. Effect of reinforcements on strength of Mg9%Al composites [J]. Compos. Struct., 2004, 66: 41
doi: 10.1016/j.compstruct.2004.04.019
|
13 |
Turan M E, Sun Y, Aydin F, et al. Effects of carbonaceous reinforcements on microstructure and corrosion properties of magnesium matrix composites [J]. Mater. Chem. Phys., 2018, 218: 182
doi: 10.1016/j.matchemphys.2018.07.050
|
14 |
Liu Y Y, Yu Q, Tan G Q, et al. Bioinspired fish-scale-like magnesium composites strengthened by contextures of continuous titanium fibers: Lessons from nature [J]. J. Magnes. Alloy., 2021, doi: 10.1016/j.jma.2021.06.023
|
15 |
Tian W B, Sun Z M, Zhang P, et al. Brazing of silicon carbide ceramics with Ni-Si-Ti powder mixtures [J]. J. Aust. Ceram. Soc., 2017, 53: 511
doi: 10.1007/s41779-017-0061-7
|
16 |
Willander M, Friesel M, Wahab Q U, et al. Silicon carbide and diamond for high temperature device applications [J]. J. Mater. Sci., 2006, 17: 1
doi: 10.1007/BF00809028
|
17 |
Chen L Q, Yao Y T. Processing, microstructures, and mechanical properties of magnesium matrix composites: A review [J]. Acta Metall. Sin. (Engl. Lett.), 2014, 27: 762
doi: 10.1007/s40195-014-0161-0
|
18 |
Zhang M Y, Jiao D, Tan G Q, et al. Strong, fracture-resistant biomimetic silicon carbide composites with laminated interwoven nanoarchitectures inspired by the crustacean exoskeleton [J]. ACS Appl. Nano Mater., 2019, 2: 1111
doi: 10.1021/acsanm.9b00063
|
19 |
Tsukamoto H. Enhancement of mechanical properties of SiCw/SiCp-reinforced magnesium composites fabricated by spark plasma sintering [J]. Results Mater., 2021, 9: 100167
|
20 |
Tayebi M, Nategh S, Najafi H, et al. Tensile properties and microstructure of ZK60/SiCw composite after extrusion and aging [J]. J. Alloys Compd., 2020, 830: 154709
doi: 10.1016/j.jallcom.2020.154709
|
21 |
Zheng M Y, Zhang W C, Wu K, et al. The deformation and fracture behavior of SiCw/AZ91 magnesium matrix composite during in-situ TEM straining [J]. J. Mater. Sci., 2003, 38: 2647
doi: 10.1023/A:1024486619379
|
22 |
Hu L X, Wang E D. Fabrication and mechanical properties of SiCw/ZK51A magnesium matrix composite by two-step squeeze casting [J]. Mater. Sci. Eng., 2000, A278: 267
|
23 |
Zheng M Y, Wu K, Yao C K. Effect of interfacial reaction on mechanical behavior of SiCw/AZ91 magnesium matrix composites [J]. Mater. Sci. Eng., 2001, A318: 50
|
24 |
Al-Ketan O, Al-Rub R K A, Rowshan R. Mechanical properties of a new type of architected interpenetrating phase composite materials [J]. Adv. Mater. Technol., 2017, 2: 1600235
doi: 10.1002/admt.201600235
|
25 |
Naglieri V, Bale H A, Gludovatz B, et al. On the development of ice-templated silicon carbide scaffolds for nature-inspired structural materials [J]. Acta Mater., 2013, 61: 6948
doi: 10.1016/j.actamat.2013.08.006
|
26 |
Shi L X, Shen P, Zhang D, et al. Reactive wetting in liquid magnesium/silica and magnesium/silicon systems [J]. Appl. Surf. Sci., 2013, 274: 124
doi: 10.1016/j.apsusc.2013.02.126
|
27 |
Shi Z, Ochiai S, Gu M, et al. The formation and thermostability of MgO and MgAl2O4 nanoparticles in oxidized SiC particle-reinforced Al-Mg composites [J]. Appl. Phys., 2002, 74A: 97
|
28 |
Shi Z L, Ochiai S, Hojo M, et al. The oxidation of SiC particles and its interfacial characteristics in Al-matrix composite [J]. J. Mater. Sci., 2001, 36: 2441
doi: 10.1023/A:1017977931250
|
29 |
Hay R S. Crystallization kinetics for SiO2 formed during SiC fiber oxidation in steam [J]. J. Am. Ceram. Soc., 2019, 102: 5587
doi: 10.1111/jace.16341
|
30 |
Wang F H, Du Y B, Jiao D, et al. Wood-inspired cement with high strength and multifunctionality [J]. Adv. Sci., 2021, 8: 2000096
doi: 10.1002/advs.202000096
|
31 |
Hughes S W. Archimedes revisited: A faster, better, cheaper method of accurately measuring the volume of small objects [J]. Phys. Educ., 2005, 40: 468
doi: 10.1088/0031-9120/40/5/008
|
32 |
Wang S G, Wang S C, Zhang L. Application of high resolution transmission X-ray tomography in material science [J]. Acta Metall. Sin., 2013, 49: 897
doi: 10.3724/SP.J.1037.2013.00107
|
|
王绍钢, 王苏程, 张 磊. 高分辨透射X射线三维成像在材料科学中的应用 [J]. 金属学报, 2013, 49: 897
doi: 10.3724/SP.J.1037.2013.00107
|
33 |
Launey M E, Munch E, Alsem D H, et al. A novel biomimetic approach to the design of high-performance ceramic-metal composites [J]. J. R. Soc. Interface, 2010, 7: 741
doi: 10.1098/rsif.2009.0331
|
34 |
Tan G Q, Zhang J, Zheng L, et al. Nature-inspired nacre-like composites combining human tooth-matching elasticity and hardness with exceptional damage tolerance [J]. Adv. Mater., 2019, 31: 1904603
doi: 10.1002/adma.201904603
|
35 |
Ferraro C, Garcia-Tuñon E, Rocha V G, et al. Light and strong SiC networks [J]. Adv. Funct. Mater., 2016, 26: 1636
doi: 10.1002/adfm.201504051
|
36 |
Naglieri V, Gludovatz B, Tomsia A P, et al. Developing strength and toughness in bio-inspired silicon carbide hybrid materials containing a compliant phase [J]. Acta Mater., 2015, 98: 141
doi: 10.1016/j.actamat.2015.07.022
|
37 |
Munch E, Launey M E, Alsem D H, et al. Tough, bio-inspired hybrid materials [J]. Science, 2008, 322: 1516
doi: 10.1126/science.1164865
pmid: 19056979
|
38 |
Jiao D, Zhang J, Liu Y Y, et al. Hierarchical toughening of bioinspired nacre-like hybrid carbon composite [J]. Carbon, 2021, 171: 409
doi: 10.1016/j.carbon.2020.09.041
|
39 |
Zhang M Y, Yu Q, Liu Z Q, et al. 3D printed Mg-NiTi interpenetrating-phase composites with high strength, damping capacity, and energy absorption efficiency [J]. Sci. Adv., 2020, 6: 5581
|
40 |
Wang L F, Lau J, Thomas E L, et al. Co-continuous composite materials for stiffness, strength, and energy dissipation [J]. Adv. Mater., 2011, 23: 1524
doi: 10.1002/adma.201003956
|
41 |
Wan Y Z, Xiong G Y, Luo H L, et al. Preparation and characterization of a new biomedical magnesium-calcium alloy [J]. Mater. Des., 2008, 29: 2034
doi: 10.1016/j.matdes.2008.04.017
|
42 |
Li J G, Xia C J, Zhang Y J, et al. Effects of TiO2 coating on microstructure and mechanical properties of magnesium matrix composite reinforced with Mg2B2O5w [J]. Mater. Des., 2012, 39: 334
doi: 10.1016/j.matdes.2012.02.059
|
43 |
Poddar P, Srivastava V C, De P K, et al. Processing and mechanical properties of SiC reinforced cast magnesium matrix composites by stir casting process [J]. Mater. Sci. Eng., 2007, A460: 357
|
44 |
Kaneda H, Choh T. Fabrication of particulate reinforced magnesium composites by applying a spontaneous infiltration phenomenon [J]. J. Mater. Sci., 1997, 32: 47
doi: 10.1023/A:1018558612135
|
45 |
Shaga A, Shen P, Guo R F, et al. Effects of oxide addition on the microstructure and mechanical properties of lamellar SiC scaffolds and Al-Si-Mg/SiC composites prepared by freeze casting and pressureless infiltration [J]. Ceram. Int., 2016, 42: 9653
doi: 10.1016/j.ceramint.2016.03.052
|
46 |
Somekawa H, Mukai T. Effect of grain refinement on fracture toughness in extruded pure magnesium [J]. Scr. Mater., 2005, 53: 1059
doi: 10.1016/j.scriptamat.2005.07.001
|
47 |
Purazrang K, Abachi P, Kainer K U. Investigation of the mechanical behaviour of magnesium composites [J]. Composites, 1994, 25: 296
doi: 10.1016/0010-4361(94)90222-4
|
48 |
Shaga A, Shen P, Xiao L G, et al. High damage-tolerance bio-inspired ZL205A/SiC composites with a lamellar-interpenetrated structure [J]. Mater. Sci. Eng., 2017, A708: 199
|
49 |
Launey M E, Ritchie R O. On the fracture toughness of advanced materials [J]. Adv. Mater., 2009, 21: 2103
doi: 10.1002/adma.200803322
|
50 |
Bouville F, Maire E, Meille S, et al. Strong, tough and stiff bioinspired ceramics from brittle constituents [J]. Nat. Mater., 2014, 13: 508
doi: 10.1038/nmat3915
pmid: 24658117
|
51 |
Ritchie R O. Mechanisms of fatigue crack propagation in metals, ceramics and composites: role of crack tip shielding [J]. Mater. Sci. Eng., 1988, A103: 15
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|