Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (7): 857-867    DOI: 10.11900/0412.1961.2021.00259
Research paper Current Issue | Archive | Adv Search |
Fabrication of Mg-Based Composites Reinforced by SiC Whisker Scaffolds with Three-Dimensional Interpenetrating-Phase Architecture and Their Mechanical Properties
GU Ruicheng1,2, ZHANG Jian2, ZHANG Mingyang2, LIU Yanyan2, WANG Shaogang3, JIAO Da2, LIU Zengqian2(), ZHANG Zhefeng2()
1.Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
2.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

GU Ruicheng, ZHANG Jian, ZHANG Mingyang, LIU Yanyan, WANG Shaogang, JIAO Da, LIU Zengqian, ZHANG Zhefeng. Fabrication of Mg-Based Composites Reinforced by SiC Whisker Scaffolds with Three-Dimensional Interpenetrating-Phase Architecture and Their Mechanical Properties. Acta Metall Sin, 2022, 58(7): 857-867.

Download:  HTML  PDF(3017KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Mg and Mg alloys, as important lightweight metal materials, have attracted great attention due to their excellent properties, such as low density, high specific strength, and good damping properties; however, their extensive applications are strictly limited by their low strength. The strength of Mg and Mg alloys can be effectively increased by introducing reinforcement phases into their matrices, i.e., via fabricating Mg-based composites. Nevertheless, the mechanical properties of Mg-based composites demonstrate a strong dependence on their microstructures. Here, new Mg-based composites reinforced by SiC whisker scaffolds with three-dimensional interpenetrating-phase architecture were fabricated through pressureless infiltration of the melt of pure Mg or AZ91D Mg alloy into the porous scaffolds of SiC whiskers. These whiskers were preferentially stacked in-plane within lamellae in the composites using gravity-assisted sedimentation and subsequent densification during the fabrication process. The microstructures and mechanical properties of the composites, particularly their fracture toughness, were characterized and analyzed. The wettability between the SiC whisker scaffolds and the melt was improved by introducing surface reactions between them which was accomplished by a pre-oxidation treatment of the scaffolds before infiltration. The pre-oxidation temperature was adjusted to ensure an adequate filling of the scaffolds without voids while avoiding the formation of excessive reaction products. The resulting composites exhibited a high flexural strength with a certain extent of fracture toughness as evidenced by stable crack propagation with rising R-curve behavior. In comparison to pure Mg, the composites infiltrated with AZ91D Mg alloy as the matrix contained a larger amount of coarsened precipitates, resulting in apparent brittleness despite increased strength.

Key words:  three-dimensional interpenetrating-phase architecture      Mg-based composite      SiC whisker      fracture toughness      toughening mechanism     
Received:  24 June 2021     
ZTFLH:  TB333  
Fund: National Key Research and Development Program of China(2020YFA0710404);National Natural Science Foundation of China(52173269);National Natural Science Foundation of China(51871216);National Natural Science Foundation of China(52101160);Liaoning Revitalization Talents Program(XLYC1907058);Youth Innovation Promotion Association(2019191)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00259     OR     https://www.ams.org.cn/EN/Y2022/V58/I7/857

Fig.1  Schematics of the fabrication procedure for the Mg-based composites reinforced by SiC whisker (SiCw) scaffolds with three-dimensional interpenetrating-phase architecture
Fig.2  SEM images of the SiCw scaffolds before (a) and after (b, c) sintering treatment, and XRD spectra of the sintered SiCw scaffolds before and after pre-oxidation treatment at different temperatures (d)
Fig.3  XRD spectra of the SiCw/Mg composites fabricated by infiltrating pure Mg and AZ91D Mg alloy into the SiCw scaffolds that were pre-oxidized at different temperatures (a), and SEM images of the composites infiltrated with pure Mg into SiCw scaffolds pre-oxidized at 1100oC (b) and 1300oC (c)
Fig.4  SEM image (a) and XRT volume renderings (b) of the SiCw/Mg composite fabricated by infiltrating pure Mg into the SiCw scaffold pre-oxidized at 1200oC, XRT volume renderings of the SiCw scaffold within the composite after making the Mg matrix transparent (c), and SEM image of the composite infiltrated with AZ91D Mg alloy into the SiCw scaffold pre-oxidized at 1200oC (d)
Fig.5  Representative flexural stress-strain curves of the SiCw/Mg composites fabricated by infiltrating pure Mg or AZ91D Mg alloy into the SiCw scaffolds pre-oxidized at different temperatures (Inset shows the loading configuration of samples for flexural test) (a), representative load-displacement curves for single-edge notched bending tests for the composites infiltrated with pure Mg and AZ91D Mg alloy into SiCw scaffolds pre-oxidized at 1200oC (The insets show the representative SEM images of the samples with distinctly different crack propagation behaviors and the loading configuration of samples for toughness measurement) (b)
Fig.6  Curves of J-integral (a) and K-based fracture toughness (KJ) (b) with crack extension (Δa) measured by in situ SEM for the SiCw/Mg composites with pure Mg and AZ91D Mg alloy as the matrices corresponding to pre-oxidation temperature of SiCw scaffolds of 1200oC (The dashed lines indicate the fracture toughness values of the composite with AZ91D Mg alloy as the matrix)
Fig.7  SEM images of the SiCw/Mg composite corresponding to pre-oxidation temperature of 1200oC showing the tortuous cracking paths and the ligament bridges at crack faces on the lateral surface (The arrows indicate relative slip between SiCw and matrix at the crack faces) (a) and the micro dimples on the fracture surface caused by the pull-out of SiCw from the matrix (The arrows indicate the pull-out of SiCw from the matrix) (b)
1 Cole G S, Sherman A M. Light weight materials for automotive applications [J]. Mater. Charact., 1995, 35: 3
doi: 10.1016/1044-5803(95)00063-1
2 Luo A, Pekguleryuz M O. Cast magnesium alloys for elevated temperature applications [J]. J. Mater. Sci., 1994, 29: 5259
doi: 10.1007/BF01171534
3 Aghion E, Bronfin B. Magnesium alloys development towards the 21st century [J]. Mater. Sci. Forum, 2000, 350-351: 19
doi: 10.4028/www.scientific.net/MSF.350-351.19
4 Mordike B L, Ebert T. Magnesium: Properties-applications-potential [J]. Mater. Sci. Eng., 2001, A302: 37
5 Száraz Z, Trojanová Z, Cabbibo M, et al. Strengthening in a WE54 magnesium alloy containing SiC particles [J]. Mater. Sci. Eng., 2007, A462: 225
6 Ferkel H, Mordike B L. Magnesium strengthened by SiC nanoparticles [J]. Mater. Sci. Eng., 2001, A298: 193
7 Chen L Y, Xu J Q, Choi H, et al. Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles [J]. Nature, 2015, 528: 539
doi: 10.1038/nature16445
8 Gupta M, Wong W L E. Magnesium-based nanocomposites: Lightweight materials of the future [J]. Mater. Charact., 2015, 105: 30
doi: 10.1016/j.matchar.2015.04.015
9 Tian Y, Wu P P, Xiao L, et al. Technological advances in fabrication of magnesium matrix composites [J]. Mater. Rev., 2016, 30(19): 32
田 莹, 吴萍萍, 肖 旅 等. 镁基复合材料的制备技术进展 [J]. 材料导报, 2016, 30(19): 32
10 Ye H Z, Liu X Y. Review of recent studies in magnesium matrix composites [J]. J. Mater. Sci., 2004, 39: 6153
doi: 10.1023/B:JMSC.0000043583.47148.31
11 Ma G H, Xiao H, Ye J, et al. Research status and development of magnesium matrix composites [J]. Mater. Sci. Technol., 2020, 36: 645
doi: 10.1080/02670836.2020.1732610
12 Lu L, Lim C Y H, Yeong W M. Effect of reinforcements on strength of Mg9%Al composites [J]. Compos. Struct., 2004, 66: 41
doi: 10.1016/j.compstruct.2004.04.019
13 Turan M E, Sun Y, Aydin F, et al. Effects of carbonaceous reinforcements on microstructure and corrosion properties of magnesium matrix composites [J]. Mater. Chem. Phys., 2018, 218: 182
doi: 10.1016/j.matchemphys.2018.07.050
14 Liu Y Y, Yu Q, Tan G Q, et al. Bioinspired fish-scale-like magnesium composites strengthened by contextures of continuous titanium fibers: Lessons from nature [J]. J. Magnes. Alloy., 2021, doi: 10.1016/j.jma.2021.06.023
15 Tian W B, Sun Z M, Zhang P, et al. Brazing of silicon carbide ceramics with Ni-Si-Ti powder mixtures [J]. J. Aust. Ceram. Soc., 2017, 53: 511
doi: 10.1007/s41779-017-0061-7
16 Willander M, Friesel M, Wahab Q U, et al. Silicon carbide and diamond for high temperature device applications [J]. J. Mater. Sci., 2006, 17: 1
doi: 10.1007/BF00809028
17 Chen L Q, Yao Y T. Processing, microstructures, and mechanical properties of magnesium matrix composites: A review [J]. Acta Metall. Sin. (Engl. Lett.), 2014, 27: 762
doi: 10.1007/s40195-014-0161-0
18 Zhang M Y, Jiao D, Tan G Q, et al. Strong, fracture-resistant biomimetic silicon carbide composites with laminated interwoven nanoarchitectures inspired by the crustacean exoskeleton [J]. ACS Appl. Nano Mater., 2019, 2: 1111
doi: 10.1021/acsanm.9b00063
19 Tsukamoto H. Enhancement of mechanical properties of SiCw/SiCp-reinforced magnesium composites fabricated by spark plasma sintering [J]. Results Mater., 2021, 9: 100167
20 Tayebi M, Nategh S, Najafi H, et al. Tensile properties and microstructure of ZK60/SiCw composite after extrusion and aging [J]. J. Alloys Compd., 2020, 830: 154709
doi: 10.1016/j.jallcom.2020.154709
21 Zheng M Y, Zhang W C, Wu K, et al. The deformation and fracture behavior of SiCw/AZ91 magnesium matrix composite during in-situ TEM straining [J]. J. Mater. Sci., 2003, 38: 2647
doi: 10.1023/A:1024486619379
22 Hu L X, Wang E D. Fabrication and mechanical properties of SiCw/ZK51A magnesium matrix composite by two-step squeeze casting [J]. Mater. Sci. Eng., 2000, A278: 267
23 Zheng M Y, Wu K, Yao C K. Effect of interfacial reaction on mechanical behavior of SiCw/AZ91 magnesium matrix composites [J]. Mater. Sci. Eng., 2001, A318: 50
24 Al-Ketan O, Al-Rub R K A, Rowshan R. Mechanical properties of a new type of architected interpenetrating phase composite materials [J]. Adv. Mater. Technol., 2017, 2: 1600235
doi: 10.1002/admt.201600235
25 Naglieri V, Bale H A, Gludovatz B, et al. On the development of ice-templated silicon carbide scaffolds for nature-inspired structural materials [J]. Acta Mater., 2013, 61: 6948
doi: 10.1016/j.actamat.2013.08.006
26 Shi L X, Shen P, Zhang D, et al. Reactive wetting in liquid magnesium/silica and magnesium/silicon systems [J]. Appl. Surf. Sci., 2013, 274: 124
doi: 10.1016/j.apsusc.2013.02.126
27 Shi Z, Ochiai S, Gu M, et al. The formation and thermostability of MgO and MgAl2O4 nanoparticles in oxidized SiC particle-reinforced Al-Mg composites [J]. Appl. Phys., 2002, 74A: 97
28 Shi Z L, Ochiai S, Hojo M, et al. The oxidation of SiC particles and its interfacial characteristics in Al-matrix composite [J]. J. Mater. Sci., 2001, 36: 2441
doi: 10.1023/A:1017977931250
29 Hay R S. Crystallization kinetics for SiO2 formed during SiC fiber oxidation in steam [J]. J. Am. Ceram. Soc., 2019, 102: 5587
doi: 10.1111/jace.16341
30 Wang F H, Du Y B, Jiao D, et al. Wood-inspired cement with high strength and multifunctionality [J]. Adv. Sci., 2021, 8: 2000096
doi: 10.1002/advs.202000096
31 Hughes S W. Archimedes revisited: A faster, better, cheaper method of accurately measuring the volume of small objects [J]. Phys. Educ., 2005, 40: 468
doi: 10.1088/0031-9120/40/5/008
32 Wang S G, Wang S C, Zhang L. Application of high resolution transmission X-ray tomography in material science [J]. Acta Metall. Sin., 2013, 49: 897
doi: 10.3724/SP.J.1037.2013.00107
王绍钢, 王苏程, 张 磊. 高分辨透射X射线三维成像在材料科学中的应用 [J]. 金属学报, 2013, 49: 897
doi: 10.3724/SP.J.1037.2013.00107
33 Launey M E, Munch E, Alsem D H, et al. A novel biomimetic approach to the design of high-performance ceramic-metal composites [J]. J. R. Soc. Interface, 2010, 7: 741
doi: 10.1098/rsif.2009.0331
34 Tan G Q, Zhang J, Zheng L, et al. Nature-inspired nacre-like composites combining human tooth-matching elasticity and hardness with exceptional damage tolerance [J]. Adv. Mater., 2019, 31: 1904603
doi: 10.1002/adma.201904603
35 Ferraro C, Garcia-Tuñon E, Rocha V G, et al. Light and strong SiC networks [J]. Adv. Funct. Mater., 2016, 26: 1636
doi: 10.1002/adfm.201504051
36 Naglieri V, Gludovatz B, Tomsia A P, et al. Developing strength and toughness in bio-inspired silicon carbide hybrid materials containing a compliant phase [J]. Acta Mater., 2015, 98: 141
doi: 10.1016/j.actamat.2015.07.022
37 Munch E, Launey M E, Alsem D H, et al. Tough, bio-inspired hybrid materials [J]. Science, 2008, 322: 1516
doi: 10.1126/science.1164865 pmid: 19056979
38 Jiao D, Zhang J, Liu Y Y, et al. Hierarchical toughening of bioinspired nacre-like hybrid carbon composite [J]. Carbon, 2021, 171: 409
doi: 10.1016/j.carbon.2020.09.041
39 Zhang M Y, Yu Q, Liu Z Q, et al. 3D printed Mg-NiTi interpenetrating-phase composites with high strength, damping capacity, and energy absorption efficiency [J]. Sci. Adv., 2020, 6: 5581
40 Wang L F, Lau J, Thomas E L, et al. Co-continuous composite materials for stiffness, strength, and energy dissipation [J]. Adv. Mater., 2011, 23: 1524
doi: 10.1002/adma.201003956
41 Wan Y Z, Xiong G Y, Luo H L, et al. Preparation and characterization of a new biomedical magnesium-calcium alloy [J]. Mater. Des., 2008, 29: 2034
doi: 10.1016/j.matdes.2008.04.017
42 Li J G, Xia C J, Zhang Y J, et al. Effects of TiO2 coating on microstructure and mechanical properties of magnesium matrix composite reinforced with Mg2B2O5w [J]. Mater. Des., 2012, 39: 334
doi: 10.1016/j.matdes.2012.02.059
43 Poddar P, Srivastava V C, De P K, et al. Processing and mechanical properties of SiC reinforced cast magnesium matrix composites by stir casting process [J]. Mater. Sci. Eng., 2007, A460: 357
44 Kaneda H, Choh T. Fabrication of particulate reinforced magnesium composites by applying a spontaneous infiltration phenomenon [J]. J. Mater. Sci., 1997, 32: 47
doi: 10.1023/A:1018558612135
45 Shaga A, Shen P, Guo R F, et al. Effects of oxide addition on the microstructure and mechanical properties of lamellar SiC scaffolds and Al-Si-Mg/SiC composites prepared by freeze casting and pressureless infiltration [J]. Ceram. Int., 2016, 42: 9653
doi: 10.1016/j.ceramint.2016.03.052
46 Somekawa H, Mukai T. Effect of grain refinement on fracture toughness in extruded pure magnesium [J]. Scr. Mater., 2005, 53: 1059
doi: 10.1016/j.scriptamat.2005.07.001
47 Purazrang K, Abachi P, Kainer K U. Investigation of the mechanical behaviour of magnesium composites [J]. Composites, 1994, 25: 296
doi: 10.1016/0010-4361(94)90222-4
48 Shaga A, Shen P, Xiao L G, et al. High damage-tolerance bio-inspired ZL205A/SiC composites with a lamellar-interpenetrated structure [J]. Mater. Sci. Eng., 2017, A708: 199
49 Launey M E, Ritchie R O. On the fracture toughness of advanced materials [J]. Adv. Mater., 2009, 21: 2103
doi: 10.1002/adma.200803322
50 Bouville F, Maire E, Meille S, et al. Strong, tough and stiff bioinspired ceramics from brittle constituents [J]. Nat. Mater., 2014, 13: 508
doi: 10.1038/nmat3915 pmid: 24658117
51 Ritchie R O. Mechanisms of fatigue crack propagation in metals, ceramics and composites: role of crack tip shielding [J]. Mater. Sci. Eng., 1988, A103: 15
[1] HU Chen, PAN Shuai, HUANG Mingxin. Strong and Tough Heterogeneous TWIP Steel Fabricated by Warm Rolling[J]. 金属学报, 2022, 58(11): 1519-1526.
[2] CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology[J]. 金属学报, 2021, 57(9): 1141-1154.
[3] ZHU Wenting, CUI Junjun, CHEN Zhenye, FENG Yang, ZHAO Yang, CHEN Liqing. Design and Performance of 690 MPa Grade Low-Carbon Microalloyed Construction Structural Steel with High Strength and Toughness[J]. 金属学报, 2021, 57(3): 340-352.
[4] LIU Zhenbao,LIANG Jianxiong,SU Jie,WANG Xiaohui,SUN Yongqing,WANG Changjun,YANG Zhiyong. Research and Application Progress in Ultra-HighStrength Stainless Steel[J]. 金属学报, 2020, 56(4): 549-557.
[5] Yucheng WU. The Routes and Mechanism of Plasma Facing Tungsten Materials to Improve Ductility[J]. 金属学报, 2019, 55(2): 171-180.
[6] Xiaojun WANG, Yeyang XIANG, Xiaoshi HU, Kun WU. Recent Progress on Magnesium Matrix Composites Reinforced by Carbonaceous Nanomaterials[J]. 金属学报, 2019, 55(1): 73-86.
[7] Yizhe LI, Baoming GONG, Xiuguo LIU, Dongpo WANG, Caiyan DENG. Out-of-Plane Constraint Effect on the Fracture Toughness of Single Edge Notch Tension Specimens[J]. 金属学报, 2018, 54(12): 1785-1791.
[8] Xiangli FENG,Lei WANG,Yang LIU. STUDY ON MICROSTRUCTURE AND DYNAMIC FRACTURE BEHAVIOR OF Q460 STEEL WELDING JOINTS[J]. 金属学报, 2016, 52(7): 787-796.
[9] Yong SHEN,Jian XU. PREPARATION AND MECHANICAL PROPERTIES OF Zr46.9Cu45.5Al5.6Y2.0 IN SITU BMG COMPOSITES WITH B2-CuZr PHASE[J]. 金属学报, 2015, 51(11): 1407-1415.
[10] ZHU Zhendong, XU Jian. Cu56Hf27Ti17 BULK METALLIC GLASS WITH HIGH FRACTURE TOUGHNESS[J]. 金属学报, 2013, 49(8): 969-975.
[11] BI Zongyue, YANG Jun, NIU Jing, ZHANG Jianxun. FRACTURE TOUGHNESS OF WELDED JOINTS OF X100 HIGH-STRENGTH PIPELINE STEEL[J]. 金属学报, 2013, 49(5): 576-582.
[12] SUN Qian, WANG Xiaonan, ZHANG Shunhu, DU Linxiu, DI Hongshuang. EFFECT OF MICROSTRUCTURE ON FRACTURE TOUGHNESS OF NEW TYPE HOT—ROLLED NANO—SCALE PRECIPITATION STRENGTHENING STEEL[J]. 金属学报, 2013, 49(12): 1501-1507.
[13] JIA Xiaojiao ZHANG Jun SU Haijun SONG Kan LIU Lin FU Hengzhi. MICROSTRUCTURES AND MECHANICAL PROPERTIES OF Al2O3–BASIC EUTECTIC IN SITU COMPOSITES DIRECTIONALLY SOLIDIFIED BY LASER FLOATING ZONE REMELTING[J]. 金属学报, 2012, 48(12): 1479-1486.
[14] MA Yue PAN Tao JIANG Bo CUI Yinhui SU Hang PENG Yun . STUDY OF THE EFFECT OF SULFUR CONTENTS ON FRACTURE TOUGHNESS OF RAILWAY WHEEL STEELS FOR HIGH SPEED TRAIN[J]. 金属学报, 2011, 47(8): 978-983.
[15] ZHANG Xin ZHANG Jinyu LIU Gang ZHANG Guojun SUN Jun. LENGTH SCALE DEPENDENT DUCTILITY AND FRACTURE BEHAVIOR OF Cu/Nb NANOSTRUCTURED METALLIC MULTILAYERS[J]. 金属学报, 2011, 47(2): 246-250.
No Suggested Reading articles found!