Research and Application Progress in Ultra-HighStrength Stainless Steel
LIU Zhenbao(),LIANG Jianxiong,SU Jie,WANG Xiaohui,SUN Yongqing,WANG Changjun,YANG Zhiyong
Division of Special Steels, Central Iron and Steel Research Institute, Beijing 100081, China
Cite this article:
LIU Zhenbao,LIANG Jianxiong,SU Jie,WANG Xiaohui,SUN Yongqing,WANG Changjun,YANG Zhiyong. Research and Application Progress in Ultra-HighStrength Stainless Steel. Acta Metall Sin, 2020, 56(4): 549-557.
In the present work, the development and research on ultra-high strength stainless steels (UHSSS) have been systematically reviewed. Specifically, the focus was primarily placed on the precipitation hardening and austenite phase toughening mechanisms. And, the hydrogen-induced stress corrosion cracking (SCC) and hydrogen embrittlement (HE) behaviors of high-strength stainless steels were also retrospected. It is suggested that the future development of UHSSS is on the basis of computer-aided alloy designing system, strengthening via multiple high-coherency precipitates and toughening by filmy high-stability austenite phase. Besides, verification of the SCC and HE underlying mechanisms is vital to further optimizing the performance of UHSSS.
Table 1 Chemical compositions of typical high strength stainless steels[13,14,15,16,17,18,19,20,21]
Steel
Rp0.2 / MPa
Rm / MPa
KIC / (MPa·m1/2)
AKU / J
Strengthening phase
17-4PH
1262
1365
-
21
Cu
15-5PH
1213
1289
-
79
Cu
Custom450
1269
1289
-
55
Cu
PH13-8
1448
1551
-
41
NiAl
Ultrafort401
1565
1669
103
56
Ni3Ti
Ultrafort403
1669
1689
60
34
Ni3Ti
1RK91
1500
1700
58
27
Cu/Ni3Ti
Custom465
1703
1779
71
-
Ni3Ti
USS122G
1550
1940
90
-
Laves/α'
Ferrium?S53
1551
1986
77
-
M2C
Table 2 Mechanical properties of typical high strength stainless steels[13,14,15,16,17,18,19,20,21]
Fig.1 Atom probe tomography (APT) map within a selected cube (box size is 70 nm×70 nm×240 nm) of a newly developed ultra-high strength steel aged specimenColor online
[1]
Zhao B, Xu G X, He F, et al. Present status and prospect of ultra high strength steel applied to aircraft landing gear [J]. J. Aeronaut. Mater., 2017, 36(6): 1
Yang K, Niu M C, Tian J L, et al. Research and development of maraging stainless steel used for new generation landing gear [J]. Acta Metall. Sin., 2018, 54: 1567
Wang J, Zou H, Li C, et al. The effect of microstructural evolution on hardening behavior of type 17-4PH stainless steel in long-term aging at 350 ℃ [J]. Mater. Charact., 2006, 57: 274
[5]
Zhang T P, Zhan D P, Qi X W, et al. Austenite and precipitation in secondary-hardening ultra-high-strength stainless steel [J]. Mater. Charact., 2018, 144: 393
[6]
Anil K V, Karthikeyan M K, Gupta R K, et al. Aging behavior in 15-5 PH precipitation hardening martensitic stainless steel [J]. Mater. Sci. Forum, 2012, 710: 483
[7]
Palanisamy D, Senthil P, Senthilkumar V. The effect of aging on machinability of 15Cr-5Ni precipitation hardened stainless steel [J]. Arch. Civil Mech. Eng., 2016, 16: 53
[8]
Martin J W, Kosa T, Dulmaine B A. High-strength, notch-ductile precipitation-hardening stainless steel alloy [P]. US, 5681528, 1997
[9]
Martin J W, Kosa T. Ultra-high-strength precipitation-hardenable stainless steel and strip made therefrom [P]. US, 6630103, 2003
[10]
Olson G B, Kuehmann C J. Materials genomics: From CALPHAD to flight [J]. Scr. Mater., 2014, 70: 25
[11]
Lu S Y, Zhang T K. Stainless Steel [M]. Beijing: Atomic Energy Press, 1995: 19
[11]
陆世英, 张廷凯. 不锈钢 [M]. 北京: 原子能出版社, 1995: 19
[12]
Liu Z B, Yang Z Y, Yong Q L, et al. A 1900 MPa grade ultra-high strength stainless steel [J]. Mater. Mech. Eng., 2008, 32(3): 48
Bajguirani H R H. The effect of ageing upon the microstructure and mechanical properties of type 15-5 PH stainless steel [J]. Mater. Sci. Eng., 2002, A338: 142
[14]
Bratukhin A G. Ways to increase the reliability of welded joints of high-strength steels in a new generation of aircraft [J]. Met. Sci. Heat Treat., 1997, 39: 123
[15]
Voznesenskaya N M, Kablov E N, Petrakov A F, et al. High-strength corrosion-resistant steels of the austenitic-martensitic class [J]. Met. Sci. Heat Treat., 2002, 44: 300
[16]
Kostina M V, Bannykh O A, Blinov V M. Effect of plastic deformation and heat treatment on the structure and hardening of nitrogen-bearing steel 0Kh16AN4B [J]. Met. Sci. Heat Treat., 2001, 43: 259
[17]
Il'ina V P. Effect of heat treatment mode on the microstructure and fracture behavior of maraging steels 03Kh11N10M2T-VD and 03Kh11N10M2T2-VD [J]. Met. Sci. Heat Treat., 2002, 44: 116
[18]
Rundkvist N A, Grachev S V. Effect of alloying and of the austenizing temperature on the phase composition and properties of corrosion-resistant maraging steels [J]. Met. Sci. Heat Treat., 1989, 31: 244
[19]
Bel'tyukov A A, Stepanov V P, Shein A S. Effect of carbon on the properties of corrosion-resistat maraging steels without titanium [J]. Met. Sci. Heat Treat., 1989, 31: 830
[20]
Liu P, Stigenberg A H, Nilsson J O. Quasicrystalline and crystalline precipitation during isothermal tempering in a 12Cr-9Ni-4Mo maraging stainless steel [J]. Acta Metall. Mater., 1995, 43: 2881
[21]
Webster D. Optimization of strength and toughness in two high-strength stainless steels [J]. Metall. Trans., 1971, 2: 1857
[22]
Habibi-Bajguirani H R H. The effect of ageing upon the microstructure and mechanical properties of type 15-5 PH stainless steel [J]. Mater. Sci. Eng., 2002, A338: 142
[23]
Habibi-Bajguirani H R, Jenkins M L. High-resolution electron microscopy analysis of the structure of copper precipitates in a martensitic stainless steel of type PH 15-5 [J]. Philos. Mag. Lett., 1996, 73: 155
[24]
Guo Z, Sha W, Vaumousse D. Microstructural evolution in a PH13-8 stainless steel after ageing [J]. Acta Mater., 2003, 51: 101
[25]
Liang J X, Liu Z B, Yang Z Y. Development and application of high strength stainless steel [J]. Aerosp. Mater. Technol., 2013, 43(3): 1
Schober M, Schnitzer R, Leitner H. Precipitation evolution in a Ti-free and Ti-containing stainless maraging steel [J]. Ultramicroscopy, 2009, 109: 553
[27]
Li Y C, Yan W, Cotton J D, et al. A new 1.9 GPa maraging stainless steel strengthened by multiple precipitating species [J]. Mater. Des., 2015, 82: 56
[28]
Lu Q, Xu W, Van Der Zwaag S. A strain-based computational design of creep-resistant steels [J]. Acta Mater., 2014, 64: 133
[29]
Xu W, Rivera-Díaz-del-Castillo P E J, Yan W, et al. A new ultrahigh-strength stainless steel strengthened by various coexisting nanoprecipitates [J]. Acta Mater., 2010, 58: 4067
[30]
Lu Q, Xu W, Van Der Zwaag S. The design of a compositionally robust martensitic creep-resistant steel with an optimized combination of precipitation hardening and solid-solution strengthening for high-temperature use [J]. Acta Mater., 2014, 77: 310
[31]
P?rn J, Rarey M. Incorporating QSPR in the enumeration of fragment space [J]. Chem. Cent. J., 2009, 3: 18
[32]
Matsuda S, Okamura Y. Reverse transformation of low-carbon low alloy steels [J]. Tetsu Hagané, 1974, 60: 226
[32]
松田 昭一, 岡村 義弘. 低炭素低合金鋼の逆変態 [J]. 鐵と鋼, 1974, 60: 226
[33]
Watanabe S, Ohtani H, Kunitake T. The influence of hot rolling and heat treatments on the distribution of boron in steel [J]. Tetsu-Hagané, 1976, 62: 1842
Song Y, Li X, Rong L, et al. The influence of tempering temperature on the reversed austenite formation and tensile properties in Fe-13%Cr-4%Ni-Mo low carbon martensite stainless steels [J]. Mater. Sci. Eng., 2011, A528: 4075
[35]
Nakada N, Tsuchiyama T, Takaki S, et al. Variant selection of reversed austenite in lath martensite [J]. ISIJ Int., 2007, 47: 1527
[36]
Schnitzer R, Radis R, N?hrer M, et al. Reverted austenite in PH13-8Mo maraging steels [J]. Mater. Chem. Phys., 2010, 122: 138
[37]
Liu Z B, Yang Z Y, Liang J X, et al. Growth behavior and precipitation of reverted austenite in ultra-high strength marageing stainless steel [J]. Heat Treat. Met., 2010, 35(2): 11
Viswanathan U K, Dey G K, Sethumadhavan V. Effects of austenite reversion during overageing on the mechanical properties of 18Ni(350) maraging steel [J]. Mater. Sci. Eng., 2005, A398: 367
[39]
Johnson W H. II. On some remarkable changes produced in iron and steel by the action of hydrogen and acids [J]. Proc. R. Soc. London, 1875, 23: 168
[40]
Frohmberg R P, Barnett W J, Troiano A R. Delayed failure and hydrogen embrittlement in steel [J]. Tech. Rep., 1954, DOI: 10.21236/ad0038142
[41]
Nie Y H, Kimura Y, Inoue T, et al. Hydrogen embrittlement of a 1500-MPa tensile strength level steel with an ultrafine elongated grain structure [J]. Metall. Mater. Trans., 2012, 43A: 1670
[42]
Nagao A, Hayashi K, Oi K, et al. Effect of uniform distribution of fine cementite on hydrogen embrittlement of low carbon martensitic steel plates [J]. ISIJ Int., 2012, 52: 213
[43]
Asahi H, Hirakami D, Yamasaki S. Hydrogen trapping behavior in vanadium-added steel [J]. ISIJ Int., 2003, 43: 527
[44]
Wei F G, Hara T, Tsuzaki K. Precise determination of the activation energy for desorption of hydrogen in two Ti-added steels by a single thermal-desorption spectrum [J]. Metall. Mater. Trans., 2004, 35B: 587
[45]
Wei F G, Hara T, Tsuzaki K. Hydrogen trapping character of nano-sized NbC precipitates in tempered martensite [A]. Proceedings of the 2008 International Hydrogen Conference-Effects of Hydrogen on Materials [C]. Materials Park, OH: ASM International, 2009: 448
[46]
Wei F G, Tsuzaki K. Quantitative analysis on hydrogen trapping of TiC particles in steel [J]. Metall. Mater. Trans., 2006, 37A: 331
[47]
Takahashi J, Kawakami K, Kobayashi Y, et al. The first direct observation of hydrogen trapping sites in TiC precipitation-hardening steel through atom probe tomography [J]. Scr. Mater., 2010, 63: 261
[48]
Takahashi J, Kawakami K, Tarui T. Direct observation of hydrogen-trapping sites in vanadium carbide precipitation steel by atom probe tomography [J]. Scr. Mater., 2012, 67: 213
[49]
Kawakami K, Matsumiya T. Numerical analysis of hydrogen trap state by TiC and V4C3 in bcc-Fe [J]. ISIJ Int., 2012, 52: 1693
[50]
Li X F, Zhang J, Fu Q Q, et al. Hydrogen embrittlement of high strength steam turbine last stage blade steels: Comparison between PH17-4 steel and PH13-8Mo steel [J]. Mater. Sci. Eng., 2019, A742: 353
[51]
Tsay L W, Chen H H, Chiang M F, et al. The influence of aging treatments on sulfide stress corrosion cracking of PH 13-8 Mo steel welds [J]. Corros. Sci., 2007, 49: 2461
[52]
Wei F G, Tsuzaki K. Hydrogen absorption of incoherent TiC particles in iron from environment at high temperatures [J]. Metall. Mater. Trans., 2004, 35A: 3155
[53]
Depover T, Escobar D P, Wallaert E, et al. Effect of hydrogen charging on the mechanical properties of advanced high strength steels [J]. Int. J. Hydrogen Energy, 2014, 39: 4647
[54]
Olden V, Thaulow C, Johnsen R. Modelling of hydrogen diffusion and hydrogen induced cracking in supermartensitic and duplex stainless steels [J]. Mater. Des., 2008, 29: 1934
[55]
Oriani R A. Hydrogen embrittlement of steels [J]. Annu. Rev. Mater. Sci., 1978, 8: 327
[56]
Liu Q L, Venezuela J, Zhang M X, et al. Hydrogen trapping in some advanced high strength steels [J]. Corros. Sci., 2016, 111: 770
[57]
Li X F, Zhang J, Chen J, et al. Effect of aging treatment on hydrogen embrittlement of PH 13-8 Mo martensite stainless steel [J]. Mater. Sci. Eng., 2016, A651: 474
[58]
Yang J L, Huang F, Guo Z H, et al. Effect of retained austenite on the hydrogen embrittlement of a medium carbon quenching and partitioning steel with refined microstructure [J]. Mater. Sci. Eng., 2016, A665: 76
[59]
Zhu X, Li W, Zhao H S, et al. Hydrogen trapping sites and hydrogen-induced cracking in high strength quenching & partitioning (Q&P) treated steel [J]. Int. J. Hydrogen Energy, 2014, 39: 13031
[60]
Fan Y H, Zhang B, Yi H L, et al. The role of reversed austenite in hydrogen embrittlement fracture of S41500 martensitic stainless steel [J]. Acta Mater., 2017, 139: 188
[61]
Yang Y, Zhang H M, Wu Z H, et al. Analysis and protection of stress corrosion of 300M ultra-high strength steel for landing gear [J]. Equip. Environ. Eng., 2016, 13(1): 68
Luo H, Yu Q, Dong C F, et al. Influence of the aging time on the microstructure and electrochemical behaviour of a 15-5PH ultra-high strength stainless steel [J]. Corros. Sci., 2018, 139: 185
[63]
Yu Q. Evolution mechanism of nanphase and its influence on corrosion of high strength stinless steel [D]. Beijing: University of Science and Technology Beijing, 2017
Pardo A, Merino M C, Coy A E, et al. Influence of Ti, C and N concentration on the intergranular corrosion behaviour of AISI 316Ti and 321 stainless steels [J]. Acta Mater., 2007, 55: 2239