Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (12): 1501-1507    DOI: 10.3724/SP.J.1037.2013.00349
Current Issue | Archive | Adv Search |
EFFECT OF MICROSTRUCTURE ON FRACTURE TOUGHNESS OF NEW TYPE HOT—ROLLED NANO—SCALE PRECIPITATION STRENGTHENING STEEL
SUN Qian1), WANG Xiaonan2), ZHANG Shunhu2), DU Linxiu3), DI Hongshuang 3)
1) Shenyang Aircraft Corporation, Shenyang 110034
2) Shagang School of Iron and Steel, Soochow University, Suzhou 215021
3) State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819
Cite this article: 

SUN Qian, WANG Xiaonan, ZHANG Shunhu, DU Linxiu, DI Hongshuang. EFFECT OF MICROSTRUCTURE ON FRACTURE TOUGHNESS OF NEW TYPE HOT—ROLLED NANO—SCALE PRECIPITATION STRENGTHENING STEEL. Acta Metall Sin, 2013, 49(12): 1501-1507.

Download:  PDF(3155KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The fracture toughness of new type hot—rolled nano—scale precipitation strengthening steels (tensile strength of 700 MPa grade and 780 MPa grade) were evaluated by crack tip opening displacement (CTOD) experiments, and the influence mechanisms of microstructure, high angle grain boundaries, dislocation density and nano—scale precipitation on fracture toughness were discussed. The results indicated, when experimental temperature were room temperature, -10 and -30℃, the δQ0.2BL value of 700 MPa grade carriage strip were 0.468, 0.333 and 0.248 mm, and the δ0.2 value of 700 MPa grade carriage strip were 0.298, 0.234 and 0.215 mm, respectively. However, the δQ0.2BL value of 780 MPa grade crossbeam strip were 0.311, 0.290 and 0.247 mm, and the δ0.2 value of 780 MPa grade crossbeam strip were 0.212, 0.212 and 0.198 mm, respectively. Therefore, the fracture toughness of 700 MPa grade steel was better than 780 MPa grade steel. The differences of microstructure between 700 MPa grade steel and 780 MPa grade steel mainly included four aspects: (1) the microstructure of 700 MPa grade steel was mainly ferrite, while the microstructure of 780 MPa grade steel was mainly bainitic ferrite; (2) the carbide shape of 700 MPa grade steel was granular or short rod, and 780 MPa grade steel was strip carbide; (3) the dislocation density of 780 MPa grade steel was significantly higher than 700 MPa grade steel; (4) the proportion of large—angle grain boundaries of 700 MPa grade steel and 780 MPa grade steel were 85.6 % and 76.8%, respectively. Therefore, improving the volume fraction of ferrite and the proportion of high angle grain boundaries, refining carbide size and reducing dislocation density could effectively improve the fracture toughness of steels. Coarse precipitation (Nb, Ti)CN and grain boundary precipitation in microstructure deteriorated fracture toughness of steel, and semi—coherent precipitates nano—scale (Nb, Ti)C on ferrite or bainite matrix have less damaging effect on fracture toughness.

Key words:  ultra—high strength steel      fracture toughness      microstructure      nano—scale precipitation     
Received:  25 June 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00349     OR     https://www.ams.org.cn/EN/Y2013/V49/I12/1501

[1] Zhong Q P, Zhao Z H.  Fractography. Beijing: Higher Education Press, 2006: 244

(钟群鹏, 赵子华. 断口学. 北京: 高等教育出版社, 2006: 244)
[2] Lacroix G, Pardoen T, Jacques P J.  Acta Mater, 2008; 56: 3900
[3] Chen X, Li Y X, Fu H G.  Acta Metall Sin, 2005; 41: 1061
(陈祥, 李言祥, 符寒光. 金属学报, 2005; 41: 1061)
[4] Bi Z Y, Yang J, Niu J, Zhang J X.  Acta Metall Sin, 2013; 49: 576
(毕宗岳, 杨军, 牛靖, 张建勋. 金属学报, 2013; 49: 576)
[5] Firrao D, Matteis P, Spena P R, Gerosa R.  Mater Sci Eng, 2013; A559: 371
[6] Seshu Kumar A, Ravi Kumar B, Datta G L, Ranganath V R.  Mater Sci Eng, 2010; A527: 954
[7] Ren Z J, Ru C Q.  Eng Fract Mech, 2013; 99: 214
[8] Fan Z Y.  Mater Sci Eng, 1995; A191: 73
[9] Lai G Y, Wood W E, Clark R A, Zackay V F, Parker E R.  Metall Mater Trans, 1974; 5B: 1663
[10] Shi Y W, Han Z X.  J Mater Process Technol, 2008; 207: 30
[11] Kim S, Lee S, Lee B S.  Mater Sci Eng, 2003; A359: 198
[12] Youngblood J L, Raghavan M.  Metall Mater Trans, 1977; 8A: 1439
[13] Cao W D, Lu X P.  Metall Mater Trans, 1987; 18A: 1569
[14] Ma Y, Pan T, Jiang B, Cui Y H, Su H, Peng Y.Acta Metall Sin, 2011; 47: 978
(马跃, 潘涛, 江波, 崔银会, 苏航, 彭云. 金属学报, 2011; 47: 978)
[15] Wang X N, Di H S, Du L X.  Acta Metall Sin, 2012; 48: 621
(王晓南, 邸洪双, 杜林秀. 金属学报, 2012; 48: 621)
[16] Wang X N, Du L X, Di H S, Xie H, Gu D H.  Steel Res Int, 2011; 82: 1417
[17] Zhong Y, Xiao F R, Zhang J W, Shan Y Y, Wang W, Yang K.Aata Mater, 2006; 54: 435
[18] Mills W J.  J Test Eval, 1981; 9(1): 56
[19] Landes J D.  Fatigue Fract Eng Mater Struct, 1995; 18: 1289
[20] Sakamoto H, Toyama K, Hirakawa K.  Mater Sci Eng, 2000; A285: 288
[21] Fang H S, Liu D Y, Xu P G, Bai B Z, Yang Z G.  Mater Mech Eng, 2001; 25: 1
(方鸿生, 刘东雨, 徐平光, 白秉哲, 杨志刚. 机械工程材料, 2001; 25: 1)
[22] Griffith A A.  Philos Trans R Soc, 1920; 221A: 163
[23] Lee K H, Kim M C, Yang W J, Lee B S.  Mater Sci Eng, 2013; A565: 158
[24] Qian C F, Jiang Z J, Chen P, Duan C H, Cui W Y.  Acta Metall Sin, 2004; 40: 159
(钱才富, 姜忠军, 陈平, 段成红, 崔文勇. 金属学报, 2004; 40: 159)
[25] Xu J Q.  Strength of Materials. Shanghai: Shanghai Jiao Tong University Press, 2009: 59
(许金泉. 材料强度学. 上海: 上海交通大学出版社, 2009: 59)
[26] Hwang B, Kim C G, Lee T.  Metall Mater Trans, 2010; 41A: 85
[27] Byun J S, Shim J H, Cho Y W, Lee D N.  Acta Mater, 2003; 51: 1593
[28] Yong Q L.  Second Phases in Structural Steels. Beijing: Metallurgical Industry Press, 2006: 145
(雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 145)
[29] Deardo A J. In: Bordignon P J P, Carneiro T, Duncombe J eds.,The Fundamental Physical Metallurgy of Niobium in Steels. Warrendale: TMS, 2003: 427
[30] Wang X N, Du L X, Zhang H L, Di H S.  J Iron Steel Res, 2011; 23(5): 45

(王晓南, 杜林秀, 张海仑, 邸洪双. 钢铁研究学报, 2011; 23(5): 45)

[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[11] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[12] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[13] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[14] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[15] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
No Suggested Reading articles found!