|
|
Research Progress of the Surface Modification of Titanium and Titanium Alloys for Biomedical Application |
CUI Zhenduo, ZHU Jiamin, JIANG Hui, WU Shuilin, ZHU Shengli( ) |
School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China |
|
Cite this article:
CUI Zhenduo, ZHU Jiamin, JIANG Hui, WU Shuilin, ZHU Shengli. Research Progress of the Surface Modification of Titanium and Titanium Alloys for Biomedical Application. Acta Metall Sin, 2022, 58(7): 837-856.
|
Abstract Titanium and titanium alloys have widely been used in biomedical applications as main substitutes for hard human tissues. To better meet the needs of safety, comfort, and durability of titanium and titanium alloys after implantation in the human body, the surface modification treatment of titanium and titanium alloys has become a research hotspot. In this review, based on the basic properties and existing problems of titanium and titanium alloys, the methods of surface modification for titanium and titanium alloys are introduced to improve their mechanical properties, biocompatibility, and bacteriostatic/antibacterial properties. Furthermore, the current challenges and prospects have been presented in this paper.
|
Received: 30 March 2022
|
|
Fund: National Natural Science Foundation of China(51771131);National Natural Science Foundation of China(52173182) |
About author: ZHU Shengli, professor, Tel: 18920951755, E-mail: slzhu@tju.edu.cn
|
1 |
Geetha M, Singh A K, Asokamani R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review [J]. Prog. Mater. Sci., 2009, 54: 397
doi: 10.1016/j.pmatsci.2008.06.004
|
2 |
Long M, Rack H J. Titanium alloys in total joint replacement—A materials science perspective [J]. Biomaterials, 1998, 19: 1621
pmid: 9839998
|
3 |
Elias C N, Lima J H C, Valiev R, et al. Biomedical applications of titanium and its alloys [J]. JOM, 2008, 60(3): 46
|
4 |
Fonseca-García A, Pérez-Alvarez J, Barrera C C, et al. The effect of simulated inflammatory conditions on the surface properties of titanium and stainless steel and their importance as biomaterials [J]. Mater. Sci. Eng., 2016, C66: 119
|
5 |
Barceloux D G. Chromium [J]. J. Toxicol.: Clin. Toxicol., 1999, 37: 173
doi: 10.1081/CLT-100102418
|
6 |
Nickens K P, Patierno S R, Ceryak S. Chromium genotoxicity: A double-edged sword [J]. Chem. Biol. Interact., 2010, 188: 276
doi: 10.1016/j.cbi.2010.04.018
|
7 |
Paustenbach D J, Tvermoes B E, Unice K M, et al. A review of the health hazards posed by cobalt [J]. Crit. Rev. Toxicol., 2013, 43: 316
doi: 10.3109/10408444.2013.779633
pmid: 23656559
|
8 |
Pavesi T, Moreira J C. Mechanisms and individuality in chromium toxicity in humans [J]. J. Appl. Toxicol., 2020, 40: 1183
doi: 10.1002/jat.3965
|
9 |
Kaur M, Singh K. Review on titanium and titanium based alloys as biomaterials for orthopaedic applications [J]. Mater. Sci. Eng., 2019, C102: 844
|
10 |
Chen L Y, Cui Y W, Zhang L C. Recent development in beta titanium alloys for biomedical applications [J]. Metals, 2020, 10: 1139
doi: 10.3390/met10091139
|
11 |
Niinomi M, Liu Y, Nakai M, et al. Biomedical titanium alloys with Young's moduli close to that of cortical bone [J]. Regen. Biomater., 2016, 3: 173
doi: 10.1093/rb/rbw016
pmid: 27252887
|
12 |
Wang L Q, Lu W J, Qin J N, et al. Effect of precipitation phase on microstructure and superelasticity of cold-rolled beta titanium alloy during heat treatment [J]. Mater. Des., 2009, 30: 3873
doi: 10.1016/j.matdes.2009.03.042
|
13 |
Wang L Q, Xie L C, Lv Y T, et al. Microstructure evolution and superelastic behavior in Ti-35Nb-2Ta-3Zr alloy processed by friction stir processing [J]. Acta Mater., 2017, 131: 499
doi: 10.1016/j.actamat.2017.03.079
|
14 |
Gode C, Attarilar S, Eghbali B, et al. Electrochemical behavior of equal channel angular pressed titanium for biomedical application [C]. AIP Conf. Proc., 2015, 1653: 020041
|
15 |
Apaza-Bedoya K, Tarce M, Benfatti C A M, et al. Synergistic interactions between corrosion and wear at titanium-based dental implant connections: A scoping review [J]. J. Periodontal Res., 2017, 52: 946
doi: 10.1111/jre.12469
pmid: 28612506
|
16 |
Goldberg J R, Gilbert J L, Jacobs J J, et al. A multicenter retrieval study of the taper interfaces of modular hip prostheses [J]. Clin. Orthop. Relat. Res., 2002, 401: 149
doi: 10.1097/00003086-200208000-00018
|
17 |
Takai S, Yoshino N, Kusaka Y, et al. Dissemination of metals from a failed patellar component made of titanium-base alloy [J]. J. Arthroplasty, 2003, 18: 931
doi: 10.1016/S0883-5403(03)00277-8
|
18 |
Moretti B, Pesce V, Maccagnano G, et al. Peripheral neuropathy after hip replacement failure: Is vanadium the culprit? [J]. Lancet, 2012, 379: 1676
doi: 10.1016/S0140-6736(12)60273-6
pmid: 22541583
|
19 |
Gilbert J L, Mali S, Urban R M, et al. In vivo oxide-induced stress corrosion cracking of Ti-6Al-4V in a neck-stem modular taper: Emergent behavior in a new mechanism of in vivo corrosion [J]. J. Biomed. Mater. Res., 2012, 100B: 584
doi: 10.1002/jbm.b.31943
|
20 |
Tsaryk R, Peters K, Barth S, et al. The role of oxidative stress in pro-inflammatory activation of human endothelial cells on Ti6Al4V alloy [J]. Biomaterials, 2013, 34: 8075
doi: 10.1016/j.biomaterials.2013.07.030
pmid: 23891083
|
21 |
Mouthuy P A, Snelling S J B, Dakin S G, et al. Biocompatibility of implantable materials: An oxidative stress viewpoint [J]. Biomaterials, 2016, 109: 55
doi: 10.1016/j.biomaterials.2016.09.010
|
22 |
Kasai Y, Iida R, Uchida A. Metal concentrations in the serum and hair of patients with titanium alloy spinal implants [J]. Spine, 2003, 28: 1320
|
23 |
Verstraeten S V, Aimo L, Oteiza P I. Aluminium and lead: Molecular mechanisms of brain toxicity [J]. Arch. Toxicol., 2008, 82: 789
doi: 10.1007/s00204-008-0345-3
pmid: 18668223
|
24 |
Jafari M S, Coyle C, Mortazavi J S M, et al. Revision hip arthroplasty: Infection is the most common cause of failure [J]. Clin. Orthop. Relat. Res., 2010, 468: 2046
doi: 10.1007/s11999-010-1251-6
|
25 |
Le D H, Goodman S B, Maloney W J, et al. Current modes of failure in TKA: Infection, instability, and stiffness predominate [J]. Clin. Orthop. Relat. Res., 2014, 472: 2197
doi: 10.1007/s11999-014-3540-y
|
26 |
Chouirfa H, Bouloussa H, Migonney V, et al. Review of titanium surface modification techniques and coatings for antibacterial applications [J]. Acta Biomater., 2019, 83: 37
doi: S1742-7061(18)30635-4
pmid: 30541702
|
27 |
Maher S, Mazinani A, Barati M R, et al. Engineered titanium implants for localized drug delivery: Recent advances and perspectives of titania nanotubes arrays [J]. Expert Opin. Drug Deliv., 2018, 15: 1021
doi: 10.1080/17425247.2018.1517743
|
28 |
Correa D R N, Kuroda P A B, Lourenço M L, et al. Development of Ti-15Zr-Mo alloys for applying as implantable biomedical devices [J]. J. Alloys Compd., 2018, 749: 163
doi: 10.1016/j.jallcom.2018.03.308
|
29 |
Bai Y J, Deng Y, Zheng Y F, et al. Characterization, corrosion behavior, cellular response and in vivo bone tissue compatibility of titanium-niobium alloy with low Young's modulus [J]. Mater. Sci. Eng., 2016, C59: 565
|
30 |
Ou K L, Weng C C, Lin Y H, et al. A promising of alloying modified beta-type titanium-niobium implant for biomedical applications: Microstructural characteristics, in vitro biocompatibility and antibacterial performance [J]. J. Alloys Compd., 2017, 697: 231
doi: 10.1016/j.jallcom.2016.12.120
|
31 |
Zhou Y, Li Y X, Yang X J, et al. Influence of Zr content on phase transformation, microstructure and mechanical properties of Ti75 - x Nb25Zr x (x = 0-6) alloys [J]. J. Alloys Compd., 2009, 486: 628
doi: 10.1016/j.jallcom.2009.07.006
|
32 |
Qiu K J, Liu Y, Zhou F Y, et al. Microstructure, mechanical properties, castability and in vitro biocompatibility of Ti-Bi alloys developed for dental applications [J]. Acta Biomater., 2015, 15: 254
doi: 10.1016/j.actbio.2015.01.009
pmid: 25595472
|
33 |
Ahn H, Lee D, Lee K M, et al. Oxidation behavior and corrosion resistance of Ti-10Ta-10Nb alloy [J]. Surf. Coat. Technol., 2008, 202: 5784
doi: 10.1016/j.surfcoat.2008.06.074
|
34 |
Nune K C, Misra R D K, Li S J, et al. Osteoblast cellular activity on low elastic modulus Ti-24Nb-4Zr-8Sn alloy [J]. Dent. Mater., 2017, 33: 152
doi: S0109-5641(16)30629-7
pmid: 27889088
|
35 |
Zheng Y F, Zhang B B, Wang B L, et al. Introduction of antibacterial function into biomedical TiNi shape memory alloy by the addition of element Ag [J]. Acta Biomater., 2011, 7: 2758
doi: 10.1016/j.actbio.2011.02.010
pmid: 21316493
|
36 |
Li H B, Cui Z D, Li Z Y, et al. Effect of gas nitriding treatment on cavitation erosion behavior of commercially pure Ti and Ti-6Al-4V alloy [J]. Surf. Coat. Technol., 2013, 221: 29
doi: 10.1016/j.surfcoat.2013.01.023
|
37 |
Li H B, Cui Z D, Li Z Y, et al. Microstructure and cavitation erosion properties of ceramic coatings fabricated on Ti-6Al-4V alloy by pack carburizing [J]. J. Mater. Eng. Perform., 2014, 23: 2772
doi: 10.1007/s11665-014-1030-8
|
38 |
Zhu Y H, Wang W, Jia X Y, et al. Deposition of TiC film on titanium for abrasion resistant implant material by ion-enhanced triode plasma CVD [J]. Appl. Surf. Sci., 2012, 262: 156
doi: 10.1016/j.apsusc.2012.03.152
|
39 |
Li Q, Niinomi M, Nakai M, et al. Improvements in the superelasticity and change in deformation mode of β-type TiNb24Zr2 alloys caused by aging treatments [J]. Metall. Mater. Trans., 2011, 42A: 2843
|
40 |
Liu Y, Li K Y, Luo T, et al. Powder metallurgical low-modulus Ti-Mg alloys for biomedical applications [J]. Mater. Sci. Eng., 2015, C56: 241
|
41 |
Karre R, Kodli B K, Rajendran A, et al. Comparative study on Ti-Nb binary alloys fabricated through spark plasma sintering and conventional P/M routes for biomedical application [J]. Mater. Sci. Eng., 2019, C94: 619
|
42 |
Attar H, Calin M, Zhang L C, et al. Manufacture by selective laser melting and mechanical behavior of commercially pure titanium [J]. Mater. Sci. Eng., 2014, A593: 170
|
43 |
Li X P, Van Humbeeck J, Kruth J P. Selective laser melting of weak-textured commercially pure titanium with high strength and ductility: A study from laser power perspective [J]. Mater. Des., 2017, 116: 352
doi: 10.1016/j.matdes.2016.12.019
|
44 |
García I, De Damborenea J J. Corrosion properties of tin prepared by laser gas alloying of Ti and Ti6Al4V [J]. Corros. Sci., 1998, 40: 1411
doi: 10.1016/S0010-938X(98)00046-8
|
45 |
Jiang P, He X L, Li X X, et al. Wear resistance of a laser surface alloyed Ti-6Al-4V alloy [J]. Surf. Coat. Technol., 2000, 130: 24
doi: 10.1016/S0257-8972(00)00680-0
|
46 |
Yue T M, Yu J K, Mei Z, et al. Excimer laser surface treatment of Ti-6Al-4V alloy for corrosion resistance enhancement [J]. Mater. Lett., 2002, 52: 206
doi: 10.1016/S0167-577X(01)00395-0
|
47 |
Hays S J. Therapeutic approaches to the treatment of neuroinflammatory diseases [J]. Curr. Pharm. Des., 1998, 4: 335
|
48 |
Wang D, He G, Tian Y, et al. Dual effects of acid etching on cell responses and mechanical properties of porous titanium with controllable open-porous structure [J]. J. Biomed. Mater. Res., 2020, 108B: 2386
|
49 |
Szmukler-Moncler S, Perrin D, Ahossi V, et al. Biological properties of acid etched titanium implants: Effect of sandblasting on bone anchorage [J]. J. Biomed. Mater. Res., 2004, 68B: 149
doi: 10.1002/jbm.b.20003
|
50 |
Baleani M, Viceconti M, Toni A. The effect of sandblasting treatment on endurance properties of titanium alloy hip prostheses [J]. Artif. Organs, 2000, 24: 296
pmid: 10816203
|
51 |
Szmukler-Moncler S, Testori T, Bernard J P. Etched implants: A comparative surface analysis of four implant systems [J]. J. Biomed. Mater. Res., 2004, 69B: 46
doi: 10.1002/jbm.b.20021
|
52 |
Wennerberg A, Albrektsson T. Effects of titanium surface topography on bone integration: A systematic review [J]. Clin. Oral Implants Res., 2009, 20: 172
doi: 10.1111/j.1600-0501.2009.01775.x
|
53 |
Klokkevold P R, Johnson P, Dadgostari S, et al. Early endosseous integration enhanced by dual acid etching of titanium: A torque removal study in the rabbit [J]. Clin. Oral Implants Res., 2001, 12: 350
doi: 10.1034/j.1600-0501.2001.012004350.x
|
54 |
Ferraris S, Venturello A, Miola M, et al. Antibacterial and bioactive nanostructured titanium surfaces for bone integration [J]. Appl. Surf. Sci., 2014, 311: 279
doi: 10.1016/j.apsusc.2014.05.056
|
55 |
Li J, Zhou P, Attarilar S, et al. Innovative surface modification procedures to achieve micro/nano-graded Ti-based biomedical alloys and implants [J]. Coatings, 2021, 11: 647
doi: 10.3390/coatings11060647
|
56 |
Chiang H J, Hsu H J, Peng P W, et al. Early bone response to machined, sandblasting acid etching (SLA) and novel surface-functionalization (SLAffinity) titanium implants: Characterization, biomechanical analysis and histological evaluation in pigs [J]. J. Biomed. Mater. Res., 2016, 104A: 397
|
57 |
Gupta N, Santhiya D, Murugavel S, et al. Effects of transition metal ion dopants (Ag, Cu and Fe) on the structural, mechanical and antibacterial properties of bioactive glass [J]. Colloids Surf., 2018, 538A: 393
|
58 |
Attarilar S, Ebrahimi M, Djavanroodi F, et al. 3D printing technologies in metallic implants: A thematic review on the techniques and procedures [J]. Int. J. Bioprint., 2021, 7: 306
|
59 |
Kurella A, Dahotre N B. Review paper: Surface modification for bioimplants: The role of laser surface engineering [J]. J. Biomater. Appl., 2005, 20: 5
pmid: 15972362
|
60 |
Tiainen L, Abreu P, Buciumeanu M, et al. Novel laser surface texturing for improved primary stability of titanium implants [J]. J. Mech. Behav. Biomed. Mater., 2019, 98: 26
doi: S1751-6161(18)31498-X
pmid: 31176991
|
61 |
Cunha A, Elie A M, Plawinski L, et al. Femtosecond laser surface texturing of titanium as a method to reduce the adhesion of Staphylococcus aureus and biofilm formation [J]. Appl. Surf. Sci., 2016, 360: 485
doi: 10.1016/j.apsusc.2015.10.102
|
62 |
Lee B H, Kim J K, Kim Y D, et al. In vivo behavior and mechanical stability of surface-modified titanium implants by plasma spray coating and chemical treatments [J]. J. Biomed. Mater. Res., 2004, 69A: 279
doi: 10.1002/jbm.a.20126
|
63 |
Sargin F, Erdogan G, Kanbur K, et al. Investigation of in vitro behavior of plasma sprayed Ti, TiO2 and HA coatings on peek [J]. Surf. Coat. Technol., 2021, 411: 126965
doi: 10.1016/j.surfcoat.2021.126965
|
64 |
Khor K A, Gu Y W, Quek C H, et al. Plasma spraying of functionally graded hydroxyapatite/Ti-6Al-4V coatings [J]. Surf. Coat. Technol., 2003, 168: 195
doi: 10.1016/S0257-8972(03)00238-X
|
65 |
Hameed P, Gopal V, Bjorklund S, et al. Axial suspension plasma spraying: An ultimate technique to tailor Ti6Al4V surface with hap for orthopaedic applications [J]. Colloids Surf., 2019, 173B: 806
|
66 |
Singh H, Prakash C, Singh S. Plasma spray deposition of HA-TiO2 on β-phase Ti-35Nb-7Ta-5Zr alloy for hip stem: Characterization of bio-mechanical properties, wettability, and wear resistance [J]. J. Bionic Eng., 2020, 17: 1029
doi: 10.1007/s42235-020-0081-9
|
67 |
Duta L. In vivo assessment of synthetic and biological-derived calcium phosphate-based coatings fabricated by pulsed laser deposition: A review [J]. Coatings, 2021, 11: 99
doi: 10.3390/coatings11010099
|
68 |
Galindo-Valdés J S, Cortés-Hernández D A, Ortiz-Cuellar J C, et al. Laser deposition of bioactive coatings by in situ synthesis of pseudowollastonite on Ti6Al4V alloy [J]. Opt. Laser Technol., 2021, 134: 106586
doi: 10.1016/j.optlastec.2020.106586
|
69 |
Cao J X, Lian R Z, Jiang X H. Magnesium and fluoride doped hydroxyapatite coatings grown by pulsed laser deposition for promoting titanium implant cytocompatibility [J]. Appl. Surf. Sci., 2020, 515: 146069
doi: 10.1016/j.apsusc.2020.146069
|
70 |
Zaveri N, Mahapatra M, Deceuster A, et al. Corrosion resistance of pulsed laser-treated Ti-6Al-4V implant in simulated biofluids [J]. Electrochim. Acta, 2008, 53: 5022
doi: 10.1016/j.electacta.2008.01.086
|
71 |
Chen L Y, Komasa S, Hashimoto Y, et al. In vitro and in vivo osteogenic activity of titanium implants coated by pulsed laser deposition with a thin film of fluoridated hydroxyapatite [J]. Int. J. Mol. Sci., 2018, 19: 1127
doi: 10.3390/ijms19041127
|
72 |
Pelletier H, Nelea V, Mille P, et al. Mechanical properties of pulsed laser-deposited hydroxyapatite thin film implanted at high energy with N+ and Ar+ ions. Part I: nanoindentation with spherical tipped indenter [J]. Nucl. Instrum. Methods Phys. Res., 2004, 216B: 269
|
73 |
D'Alessio L, Ferro D, Marotta V, et al. Laser ablation and deposition of bioglass® 45S5 thin films [J]. Appl. Surf. Sci., 2001, 183: 10
doi: 10.1016/S0169-4332(01)00466-4
|
74 |
Gnanavel S, Ponnusamy S, Mohan L, et al. Electrochemical behavior of biomedical titanium alloys coated with diamond carbon in Hanks' solution [J]. J. Mater. Eng. Perform., 2018, 27: 1635
doi: 10.1007/s11665-018-3250-9
|
75 |
Kaliaraj G S, Bavanilathamuthiah M, Kirubaharan K, et al. Bio-inspired YSZ coated titanium by EB-PVD for biomedical applications [J]. Surf. Coat. Technol., 2016, 307: 227
doi: 10.1016/j.surfcoat.2016.08.039
|
76 |
Paital S R, Dahotre N B. Calcium phosphate coatings for bio-implant applications: Materials, performance factors, and methodologies [J]. Mater. Sci. Eng., 2009, R66: 1
|
77 |
Oyane A, Wang X P, Sogo Y, et al. Calcium phosphate composite layers for surface-mediated gene transfer [J]. Acta Biomater., 2012, 8: 2034
doi: 10.1016/j.actbio.2012.02.003
|
78 |
Surmenev R A, Surmeneva M A, Ivanova A A. Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis—A review [J]. Acta Biomater., 2014, 10: 557
doi: 10.1016/j.actbio.2013.10.036
pmid: 24211734
|
79 |
Liu B, Shi X M, Xiao G Y, et al. In-situ preparation of scholzite conversion coatings on titanium and Ti-6Al-4V for biomedical applications [J]. Colloids Surf., 2017, 153B: 291
|
80 |
Yu W Z, Zhang Y Z, Liu X M, et al. Synergistic antibacterial activity of multi components in lysozyme/chitosan/silver/hydroxyapatite hybrid coating [J]. Mater. Des., 2018, 139: 351
doi: 10.1016/j.matdes.2017.11.018
|
81 |
Liu X H, Wu L, Ai H J, et al. Cytocompatibility and early osseointegration of nano TiO2-modified Ti-24Nb-4Zr-7.9Sn surfaces [J]. Mater. Sci. Eng., 2015, C48: 256
|
82 |
Zhang X M, Li Z Y, Yuan X B, et al. Fabrication of dopamine-modified hyaluronic acid/chitosan multilayers on titanium alloy by layer-by-layer self-assembly for promoting osteoblast growth [J]. Appl. Surf. Sci., 2013, 284: 732
doi: 10.1016/j.apsusc.2013.08.002
|
83 |
İzmir M, Ercan B. Anodization of titanium alloys for orthopedic applications [J]. Front. Chem. Sci. Eng., 2019, 13: 28
doi: 10.1007/s11705-018-1759-y
|
84 |
Minagar S, Berndt C C, Wang J, et al. A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces [J]. Acta Biomater., 2012, 8: 2875
doi: 10.1016/j.actbio.2012.04.005
|
85 |
Schwartz Z, Olivares-Navarrete R, Wieland M, et al. Mechanisms regulating increased production of osteoprotegerin by osteoblasts cultured on microstructured titanium surfaces [J]. Biomaterials, 2009, 30: 3390
doi: 10.1016/j.biomaterials.2009.03.047
pmid: 19395022
|
86 |
Kim M J, Kim C W, Lim Y J, et al. Microrough titanium surface affects biologic response in MG63 osteoblast-like cells [J]. J. Biomed. Mater. Res., 2006, 79A: 1023
doi: 10.1002/jbm.a.31040
|
87 |
Yu W Q, Jiang X Q, Zhang F Q, et al. The effect of anatase TiO2 nanotube layers on MC3T3-E1 preosteoblast adhesion, proliferation, and differentiation [J]. J. Biomed. Mater. Res., 2010, 94A: 1012
|
88 |
Zhao L Z, Mei S L, Chu P K, et al. The influence of hierarchical hybrid micro/nano-textured titanium surface with titania nanotubes on osteoblast functions [J]. Biomaterials, 2010, 31: 5072
doi: 10.1016/j.biomaterials.2010.03.014
|
89 |
Huang X B, Liu Y P, Yu H W, et al. One-step fabrication of cytocompatible micro/nano-textured surface with TiO2 mesoporous arrays on titanium by high current anodization [J]. Electrochim. Acta, 2016, 199: 116
doi: 10.1016/j.electacta.2016.03.119
|
90 |
Hu N, Wu Y Z, Xie L X, et al. Enhanced interfacial adhesion and osseointegration of anodic TiO2 nanotube arrays on ultra-fine-grained titanium and underlying mechanisms [J]. Acta Biomater., 2020, 106: 360
doi: 10.1016/j.actbio.2020.02.009
|
91 |
Lee J K, Choi D S, Jang I, et al. Improved osseointegration of dental titanium implants by TiO2 nanotube arrays with recombinant human bone morphogenetic protein-2: A pilot in vivo study [J]. Int. J. Nanomedicine, 2015, 10: 1145
|
92 |
Su E P, Justin D E, Pratt C R, et al. Effects of titanium nanotubes on the osseointegration, cell differentiation, mineralisation and antibacterial properties of orthopaedic implant surfaces [J]. Bone Joint J., 2018, 100-B: 9
|
93 |
Kim S Y, Kim Y K, Park I S, et al. Effect of alkali and heat treatments for bioactivity of TiO2 nanotubes [J]. Appl. Surf. Sci., 2014, 321: 412
doi: 10.1016/j.apsusc.2014.09.177
|
94 |
Kang M K, Moon S K, Kim K M, et al. Antibacterial effect and cytocompatibility of nano-structured TiO2 film containing Cl [J]. Dent. Mater. J., 2011, 30: 790
doi: 10.4012/dmj.2011-021
|
95 |
Liang Y Q, Yang X J, Cui Z D, et al. Self-organized nanotubular layer on Ti-4Zr-22Nb-2Sn alloys formed in organic electrolytes [J]. J. Mater. Res., 2009, 24: 3647
doi: 10.1557/jmr.2009.0427
|
96 |
Shin K R, Kim Y S, Kim G W, et al. Effects of concentration of Ag nanoparticles on surface structure and in vitro biological responses of oxide layer on pure titanium via plasma electrolytic oxidation [J]. Appl. Surf. Sci., 2015, 347: 574
doi: 10.1016/j.apsusc.2015.04.161
|
97 |
Kaluđerović M R, Schreckenbach J P, Graf H L. First titanium dental implants with white surfaces: Preparation and in vitro tests [J]. Dent. Mater., 2014, 30: 759
doi: 10.1016/j.dental.2014.04.005
pmid: 24853435
|
98 |
Wang H Y, Zhu R F, Lu Y P, et al. Preparation and properties of plasma electrolytic oxidation coating on sandblasted pure titanium by a combination treatment [J]. Mater. Sci. Eng., 2014, C42: 657
|
99 |
Hong M H, Lee D H, Kim K M, et al. Study on bioactivity and bonding strength between Ti alloy substrate and TiO2 film by micro-arc oxidation [J]. Thin Solid Films, 2011, 519: 7065
doi: 10.1016/j.tsf.2011.01.223
|
100 |
Wang R Y, He X J, Gao Y E, et al. Antimicrobial property, cytocompatibility and corrosion resistance of Zn-doped ZrO2/TiO2 coatings on Ti6Al4V implants [J]. Mater. Sci. Eng., 2017, C75: 7
|
101 |
Matos A O, Ricomini-Filho A P, Beline T, et al. Three-species biofilm model onto plasma-treated titanium implant surface [J]. Colloids Surf., 2017, 152B: 354
|
102 |
Zhang J, Tu Q S, Bonewald L F, et al. Effects of miR-335-5p in modulating osteogenic differentiation by specifically downregulating Wnt antagonist DKK1 [J]. J. Bone Miner. Res., 2011, 26: 1953
doi: 10.1002/jbmr.377
pmid: 21351149
|
103 |
Li Y, Fan L K, Liu S Y, et al. The promotion of bone regeneration through positive regulation of angiogenic-osteogenic coupling using microRNA-26a [J]. Biomaterials, 2013, 34: 5048
doi: 10.1016/j.biomaterials.2013.03.052
|
104 |
Suh J S, Lee J Y, Choi Y S, et al. Erratum to ‘Peptide-mediated intracellular delivery of miRNA-29b for osteogenic stem cell differentiation' [Biomaterials 34 (2013) 4347-4359] [J]. Biomaterials, 2014, 35: 5039
doi: 10.1016/j.biomaterials.2014.03.010
|
105 |
Meng Y B, Li X, Li Z Y, et al. Surface functionalization of titanium alloy with miR-29b nanocapsules to enhance bone regeneration [J]. ACS Appl. Mater. Interfaces, 2016, 8: 5783
doi: 10.1021/acsami.5b10650
|
106 |
Geng Z, Wang X G, Zhao J, et al. The synergistic effect of strontium-substituted hydroxyapatite and microRNA-21 on improving bone remodeling and osseointegration [J]. Biomater. Sci., 2018, 6: 2694
doi: 10.1039/C8BM00716K
|
107 |
Geng Z, Yu Y M, Li Z Y, et al. Mir-21 promotes osseointegration and mineralization through enhancing both osteogenic and osteoclastic expression [J]. Mater. Sci. Eng., 2020, C111: 110785
|
108 |
Zhang X M, Zhu S L, Li Z Y, et al. Multilayer modification on titanium surface for in situ delivery of MicroRNAs [J]. Mater. Lett., 2014, 133: 243
doi: 10.1016/j.matlet.2014.07.024
|
109 |
Shahriyari F, Razaghian A, Taghiabadi R, et al. Effect of friction hardening pre-treatment on increasing cytocompatibility of alkali heat-treated Ti-6Al-4V alloy [J]. Surf. Coat. Technol., 2018, 353: 148
doi: 10.1016/j.surfcoat.2018.08.051
|
110 |
Sun Y S, Chang J H, Huang H H. Enhancing the biological response of titanium surface through the immobilization of bone morphogenetic protein-2 using the natural cross-linker genipin [J]. Surf. Coat. Technol., 2016, 303: 289
doi: 10.1016/j.surfcoat.2016.02.051
|
111 |
Hu H, Cui Z D, Zhu S L, et al. Preparation of hydroxyapatite layer on Ti-based bulk metallic glasses by acid and alkali pre-treatment [J]. Rare Met., 2015, 34: 22
doi: 10.1007/s12598-014-0402-4
|
112 |
Chen M F, Liu D B, You C, et al. Interfacial characteristic of graded hydroxyapatite and titanium thin film by magnetron sputtering [J]. Surf. Coat. Technol., 2007, 201: 5688
doi: 10.1016/j.surfcoat.2006.07.057
|
113 |
Li M, Li L Q, Su K, et al. Highly effective and noninvasive near-infrared eradication of a Staphylococcus aureus biofilm on implants by a photoresponsive coating within 20 min [J]. Adv. Sci., 2019, 6: 1900599
doi: 10.1002/advs.201900599
|
114 |
Tan L, Li J, Liu X M, et al. Rapid biofilm eradication on bone implants using red phosphorus and near-infrared light [J]. Adv. Mater., 2018, 30: 1801808
doi: 10.1002/adma.201801808
|
115 |
Hosseinabadi H N, Sajjady S A, Amini S. Creating micro textured surfaces for the improvement of surface wettability through ultrasonic vibration assisted turning [J]. Int. J. Adv. Manuf. Technol., 2018, 96: 2825
doi: 10.1007/s00170-018-1580-2
|
116 |
Gao X J, Tong W J, Ouyang X P, et al. Facile fabrication of a superhydrophobic titanium surface with mechanical durability by chemical etching [J]. RSC Adv., 2015, 5: 84666
doi: 10.1039/C5RA15293C
|
117 |
Hou X M, Wang X B, Zhu Q S, et al. Preparation of polypropylene superhydrophobic surface and its blood compatibility [J]. Colloids Surf., 2010, 80B: 247
|
118 |
Tang P F, Zhang W, Wang Y, et al. Effect of superhydrophobic surface of titanium on Staphylococcus aureus adhesion [J]. J. Nanomater., 2011, 2011: 178921
|
119 |
Zhang X, Wan Y, Ren B, et al. Preparation of superhydrophobic surface on titanium alloy via micro-milling, anodic oxidation and fluorination [J]. Micromachines, 2020, 11: 316
doi: 10.3390/mi11030316
|
120 |
Patiño-Herrera R, González-Alatorre G, Estrada-Baltazar A, et al. Hydrophobic coatings for prevention of dental enamel erosion [J]. Surf. Coat. Technol., 2015, 275: 148
doi: 10.1016/j.surfcoat.2015.05.026
|
121 |
Mi G J, Shi D, Wang M, et al. Reducing bacterial infections and biofilm formation using nanoparticles and nanostructured antibacterial surfaces [J]. Adv. Healthc. Mater., 2018, 7: 1800103
doi: 10.1002/adhm.201800103
|
122 |
Kingshott P, Wei J, Bagge-Ravn D, et al. Covalent attachment of poly(ethylene glycol) to surfaces, critical for reducing bacterial adhesion [J]. Langmuir, 2003, 19: 6912
doi: 10.1021/la034032m
|
123 |
Harris L G, Tosatti S, Wieland M, et al. Staphylococcus aureus adhesion to titanium oxide surfaces coated with non-functionalized and peptide-functionalized poly(l-lysine)-grafted-poly(ethylene glycol) copolymers [J]. Biomaterials, 2004, 25: 4135
pmid: 15046904
|
124 |
Yang F, Williams C G, Wang D A, et al. The effect of incorporating RGD adhesive peptide in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells [J]. Biomaterials, 2005, 26: 5991
pmid: 15878198
|
125 |
Ding X, Yang C, Lim T P, et al. Antibacterial and antifouling catheter coatings using surface grafted PEG-b-cationic polycarbonate diblock copolymers [J]. Biomaterials, 2012, 33: 6593
doi: 10.1016/j.biomaterials.2012.06.001
pmid: 22748920
|
126 |
Yang C, Ding X, Ono R J, et al. Brush-like polycarbonates containing dopamine, cations, and PEG providing a broad-spectrum, antibacterial, and antifouling surface via one-step coating [J]. Adv. Mater., 2014, 26: 7346
doi: 10.1002/adma.201402059
|
127 |
Li L L, Qi G B, Yu F Q, et al. An adaptive biointerface from self-assembled functional peptides for tissue engineering [J]. Adv. Mater., 2015, 27: 3181
doi: 10.1002/adma.201500658
|
128 |
Ivanova E P, Hasan J, Webb H K, et al. Bactericidal activity of black silicon [J]. Nat. Commun., 2013, 4: 2838
doi: 10.1038/ncomms3838
pmid: 24281410
|
129 |
Mainwaring D E, Nguyen S H, Webb H, et al. The nature of inherent bactericidal activity: Insights from the nanotopology of three species of dragonfly [J]. Nanoscale, 2016, 8: 6527
doi: 10.1039/c5nr08542j
pmid: 26935293
|
130 |
Li J, Tan L, Liu X M, et al. Balancing bacteria-osteoblast competition through selective physical puncture and biofunctionalization of ZnO/polydopamine/arginine-glycine-aspartic acid-cysteine nanorods [J]. ACS Nano, 2017, 11: 11250
doi: 10.1021/acsnano.7b05620
|
131 |
Zhong Z X, Xu Z, Sheng T, et al. Unusual air filters with ultrahigh efficiency and antibacterial functionality enabled by ZnO nanorods [J]. ACS Appl. Mater. Interfaces, 2015, 7: 21538
doi: 10.1021/acsami.5b06810
|
132 |
Nguyen M N, Lebarbe T, Zouani O F, et al. Impact of RGD nanopatterns grafted onto titanium on osteoblastic cell adhesion [J]. Biomacromolecules, 2012, 13: 896
doi: 10.1021/bm201812u
pmid: 22288777
|
133 |
Bellis S L. Advantages of RGD peptides for directing cell association with biomaterials [J]. Biomaterials, 2011, 32: 4205
doi: 10.1016/j.biomaterials.2011.02.029
pmid: 21515168
|
134 |
Swartjes J J T M, Das T, Sharifi S, et al. A functional DNase I coating to prevent adhesion of bacteria and the formation of biofilm [J]. Adv. Funct. Mater., 2013, 23: 2843
doi: 10.1002/adfm.201202927
|
135 |
Flemming H C, Wingender J. The biofilm matrix [J]. Nat. Rev. Microbiol., 2010, 8: 623
doi: 10.1038/nrmicro2415
|
136 |
Arciola C R, Campoccia D, Montanaro L. Implant infections: Adhesion, biofilm formation and immune evasion [J]. Nat. Rev. Microbiol., 2018, 16: 397
doi: 10.1038/s41579-018-0019-y
pmid: 29720707
|
137 |
Chen Z W, Ji H W, Liu C Q, et al. A multinuclear metal complex based dnase-mimetic artificial enzyme: Matrix cleavage for combating bacterial biofilms [J]. Angew. Chem. Int. Ed., 2016, 55: 10732
doi: 10.1002/anie.201605296
|
138 |
Liu Z W, Wang F M, Ren J S, et al. A series of MOF/Ce-based nanozymes with dual enzyme-like activity disrupting biofilms and hindering recolonization of bacteria [J]. Biomaterials, 2019, 208: 21
doi: 10.1016/j.biomaterials.2019.04.007
|
139 |
Miller M B, Bassler B L. Quorum sensing in bacteria [J]. Annu. Rev. Microbiol., 2001, 55: 165
pmid: 11544353
|
140 |
Waters C M, Bassler B L. Quorum sensing: Cell-to-cell communication in bacteria [J]. Annu. Rev. Cell. Dev. Biol., 2005, 21: 319
doi: 10.1146/annurev.cellbio.21.012704.131001
|
141 |
Flickinger S T, Copeland M F, Downes E M, et al. Quorum sensing between Pseudomonas aeruginosa biofilms accelerates cell growth [J]. J. Am. Chem. Soc., 2011, 133: 5966
doi: 10.1021/ja111131f
pmid: 21434644
|
142 |
Sun Y H, Qin H S, Yan Z Q, et al. Combating biofilm associated infection in vivo: Integration of quorum sensing inhibition and photodynamic treatment based on multidrug delivered hollow carbon nitride sphere [J]. Adv. Funct. Mater., 2019, 29: 1808222
doi: 10.1002/adfm.201808222
|
143 |
Vermote A, Brackman G, Risseeuw M D P, et al. Hamamelitannin analogues that modulate quorum sensing as potentiators of antibiotics against Staphylococcus aureus [J]. Angew. Chem. Int. Ed., 2016, 55: 6551
doi: 10.1002/anie.201601973
pmid: 27095479
|
144 |
Ivanova K, Fernandes M M, Mendoza E, et al. Enzyme multilayer coatings inhibit Pseudomonas aeruginosa biofilm formation on urinary catheters [J]. Appl. Microbiol. Biotechnol., 2015, 99: 4373
doi: 10.1007/s00253-015-6378-7
|
145 |
Yuan Z, He Y, Lin C C, et al. Antibacterial surface design of biomedical titanium materials for orthopedic applications [J]. J. Mater. Sci. Technol., 2021, 78: 51
doi: 10.1016/j.jmst.2020.10.066
|
146 |
Handke L D, Rogers K L, Olson M E, et al. Staphylococcus epidermidis saeR is an effector of anaerobic growth and a mediator of acute inflammation [J]. Infect. Immun., 2008, 76: 141
doi: 10.1128/IAI.00556-07
pmid: 17954724
|
147 |
Yang S B, Han X G, Yang Y, et al. Bacteria-targeting nanoparticles with microenvironment-responsive antibiotic release to eliminate intracellular Staphylococcus aureus and associated infection [J]. ACS Appl. Mater. Interfaces, 2018, 10: 14299
doi: 10.1021/acsami.7b15678
|
148 |
Chatterjee S S, Joo H S, Duong A C, et al. Essential Staphylococcus aureus toxin export system [J]. Nat. Med., 2013, 19: 364
doi: 10.1038/nm.3047
pmid: 23396209
|
149 |
Sutrisno L, Hu Y, Shen X K, et al. Fabrication of hyaluronidase-responsive biocompatible multilayers on BMP2 loaded titanium nanotube for the bacterial infection prevention [J]. Mater. Sci. Eng., 2018, C89: 95
|
150 |
Zhuk I, Jariwala F, Attygalle A B, et al. Self-defensive layer-by-layer films with bacteria-triggered antibiotic release [J]. ACS Nano, 2014, 8: 7733
doi: 10.1021/nn500674g
|
151 |
Yuan Z, Huang S Z, Lan S X, et al. Surface engineering of titanium implants with enzyme-triggered antibacterial properties and enhanced osseointegration in vivo [J]. J. Mater. Chem., 2018, 6B: 8090
|
152 |
Jia Z J, Xiu P, Li M, et al. Bioinspired anchoring AgNPs onto micro-nanoporous TiO2 orthopedic coatings: Trap-killing of bacteria, surface-regulated osteoblast functions and host responses [J]. Biomaterials, 2016, 75: 203
doi: 10.1016/j.biomaterials.2015.10.035
|
153 |
Lin X, Yang S F, Lai K, et al. Orthopedic implant biomaterials with both osteogenic and anti-infection capacities and associated in vivo evaluation methods [J]. Nanomed: Nanotechnol. Biol. Med., 2017, 13: 123
doi: 10.1016/j.nano.2016.08.003
|
154 |
Afewerki S, Bassous N, Harb S, et al. Advances in dual functional antimicrobial and osteoinductive biomaterials for orthopaedic applications [J]. Nanomed: Nanotechnol., Biol. Med., 2020, 24: 102143
doi: 10.1016/j.nano.2019.102143
|
155 |
Wang Z M, Wang K F, Lu X, et al. Nanostructured architectures by assembling polysaccharide-coated BSA nanoparticles for biomedical application [J]. Adv. Healthc. Mater., 2015, 4: 927
doi: 10.1002/adhm.201400684
|
156 |
Min J, Choi K Y, Dreaden E C, et al. Designer dual therapy nanolayered implant coatings eradicate biofilms and accelerate bone tissue repair [J]. ACS Nano, 2016, 10: 4441
doi: 10.1021/acsnano.6b00087
|
157 |
Verlee A, Mincke S, Stevens C V. Recent developments in antibacterial and antifungal chitosan and its derivatives [J]. Carbohydr. Polym., 2017, 164: 268
doi: 10.1016/j.carbpol.2017.02.001
|
158 |
Chua P H, Neoh K G, Kang E T, et al. Surface functionalization of titanium with hyaluronic acid/chitosan polyelectrolyte multilayers and RGD for promoting osteoblast functions and inhibiting bacterial adhesion [J]. Biomaterials, 2008, 29: 1412
doi: 10.1016/j.biomaterials.2007.12.019
|
159 |
Ordikhani F, Tamjid E, Simchi A. Characterization and antibacterial performance of electrodeposited chitosan-vancomycin composite coatings for prevention of implant-associated infections [J]. Mater. Sci. Eng., 2014, C41: 240
|
160 |
Lin J, Qiu S Y, Lewis K, et al. Mechanism of bactericidal and fungicidal activities of textiles covalently modified with alkylated polyethylenimine [J]. Biotechnol. Bioeng., 2003, 83: 168
doi: 10.1002/bit.10651
|
161 |
Atar-Froyman L, Sharon A, Weiss E I, et al. Anti-biofilm properties of wound dressing incorporating nonrelease polycationic antimicrobials [J]. Biomaterials, 2015, 46: 141
doi: 10.1016/j.biomaterials.2014.12.047
pmid: 25678123
|
162 |
Asri L A T W, Crismaru M, Roest S, et al. A shape-adaptive, antibacterial-coating of immobilized quaternary-ammonium compounds tethered on hyperbranched polyurea and its mechanism of action [J]. Adv. Funct. Mater., 2014, 24: 346
doi: 10.1002/adfm.201301686
|
163 |
Wei T, Zhan W J, Yu Q, et al. Smart biointerface with photoswitched functions between bactericidal activity and bacteria-releasing ability [J]. ACS Appl. Mater. Interfaces, 2017, 9: 25767
doi: 10.1021/acsami.7b06483
|
164 |
Zasloff M. Antimicrobial peptides of multicellular organisms [J]. Nature, 2002, 415: 389
doi: 10.1038/415389a
|
165 |
Reddy K V R, Yedery R D, Aranha C. Antimicrobial peptides: Premises and promises [J]. Int. J. Antimicrob. Agents, 2004, 24: 536
doi: 10.1016/j.ijantimicag.2004.09.005
|
166 |
Brogden K A. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? [J]. Nat. Rev. Microbiol., 2005, 3: 238
doi: 10.1038/nrmicro1098
pmid: 15703760
|
167 |
Campoccia D, Montanaro L, Arciola C R. A review of the biomaterials technologies for infection-resistant surfaces [J]. Biomaterials, 2013, 34: 8533
doi: 10.1016/j.biomaterials.2013.07.089
pmid: 23953781
|
168 |
Mellier C, Fayon F, Boukhechba F, et al. Design and properties of novel gallium-doped injectable apatitic cements [J]. Acta Biomater., 2015, 24: 322
doi: 10.1016/j.actbio.2015.05.027
|
169 |
Mei S L, Wang H Y, Wang W, et al. Antibacterial effects and biocompatibility of titanium surfaces with graded silver incorporation in titania nanotubes [J]. Biomaterials, 2014, 35: 4255
doi: 10.1016/j.biomaterials.2014.02.005
|
170 |
Zhang L, Gao Q, Han Y. Zn and Ag co-doped anti-microbial TiO2 coatings on Ti by micro-arc oxidation [J]. J. Mater. Sci. Technol., 2016, 32: 919
doi: 10.1016/j.jmst.2016.01.008
|
171 |
Sedelnikova M B, Komarova E G, Sharkeev Y P, et al. Modification of titanium surface via Ag-, Sr- and Si-containing micro-arc calcium phosphate coating [J]. Bioact. Mater., 2019, 4: 224
doi: 10.1016/j.bioactmat.2019.07.001
pmid: 31406950
|
172 |
Roknian M, Fattah-alhosseini A, Gashti S O, et al. Study of the effect of ZnO nanoparticles addition to PEO coatings on pure titanium substrate: Microstructural analysis, antibacterial effect and corrosion behavior of coatings in ringer's physiological solution [J]. J. Alloys Compd., 2018, 740: 330
doi: 10.1016/j.jallcom.2017.12.366
|
173 |
Liu W W, Su P L, Chen S, et al. Synthesis of TiO2 nanotubes with ZnO nanoparticles to achieve antibacterial properties and stem cell compatibility [J]. Nanoscale, 2014, 6: 9050
doi: 10.1039/C4NR01531B
|
174 |
Maimaiti B, Zhang N Y, Yan L, et al. Stable ZnO-doped hydroxyapatite nanocoating for anti-infection and osteogenic on titanium [J]. Colloids Surf., 2020, 186B: 110731
|
175 |
Ma Z, Ren L, Shahzad M B, et al. Hot deformation behavior of Cu-bearing antibacterial titanium alloy [J]. J. Mater. Sci. Technol., 2018, 34: 1867
doi: 10.1016/j.jmst.2017.12.015
|
176 |
Liu H, Liu R, Ullah I, et al. Rough surface of copper-bearing titanium alloy with multifunctions of osteogenic ability and antibacterial activity [J]. J. Mater. Sci. Technol., 2020, 48: 130
doi: 10.1016/j.jmst.2019.12.019
|
177 |
Liu R, Tang Y L, Liu H, et al. Effects of combined chemical design (Cu addition) and topographical modification (SLA) of Ti-Cu/SLA for promoting osteogenic, angiogenic and antibacterial activities [J]. J. Mater. Sci. Technol., 2020, 47: 202
doi: 10.1016/j.jmst.2019.10.045
|
178 |
Agarwal A, Weis T L, Schurr M J, et al. Surfaces modified with nanometer-thick silver-impregnated polymeric films that kill bacteria but support growth of mammalian cells [J]. Biomaterials, 2010, 31: 680
doi: 10.1016/j.biomaterials.2009.09.092
pmid: 19864019
|
179 |
Cheng H, Xiong W, Fang Z, et al. Strontium (Sr) and silver (Ag) loaded nanotubular structures with combined osteoinductive and antimicrobial activities [J]. Acta Biomater., 2016, 31: 388
doi: S1742-7061(15)30222-1
pmid: 26612413
|
180 |
Tîlmaciu C M, Mathieu M, Lavigne J P, et al. In vitro and in vivo characterization of antibacterial activity and biocompatibility: A study on silver-containing phosphonate monolayers on titanium [J]. Acta Biomater., 2015, 15: 266
doi: 10.1016/j.actbio.2014.12.020
|
181 |
van Hengel I A J, Putra N E, Tierolf M W A M, et al. Biofunctionalization of selective laser melted porous titanium using silver and zinc nanoparticles to prevent infections by antibiotic-resistant bacteria [J]. Acta Biomater., 2020, 107: 325
doi: S1742-7061(20)30132-X
pmid: 32145392
|
182 |
Shen X K, Hu Y, Xu G Q, et al. Regulation of the biological functions of osteoblasts and bone formation by Zn-incorporated coating on microrough titanium [J]. ACS Appl. Mater. Interfaces, 2014, 6: 16426
doi: 10.1021/am5049338
|
183 |
Jin G D, Cao H L, Qiao Y Q, et al. Osteogenic activity and antibacterial effect of zinc ion implanted titanium [J]. Colloids Surf., 2014, 117B: 158
|
184 |
Huo K F, Zhang X M, Wang H R, et al. Osteogenic activity and antibacterial effects on titanium surfaces modified with Zn-incorporated nanotube arrays [J]. Biomaterials, 2013, 34: 3467
doi: 10.1016/j.biomaterials.2013.01.071
|
185 |
Liu P, Zhao Y C, Yuan Z, et al. Construction of Zn-incorporated multilayer films to promote osteoblasts growth and reduce bacterial adhesion [J]. Mater. Sci. Eng., 2017, C75: 998
|
186 |
Wu M C, Deokar A R, Liao J H, et al. Graphene-based photothermal agent for rapid and effective killing of bacteria [J]. ACS Nano, 2013, 7: 1281
doi: 10.1021/nn304782d
|
187 |
Wang C, Wang Y L, Zhang L L, et al. Pretreated macrophage-membrane-coated gold nanocages for precise drug delivery for treatment of bacterial infections [J]. Adv. Mater., 2018, 30: 1804023
doi: 10.1002/adma.201804023
|
188 |
Qiao Y, Ping Y, Zhang H B, et al. Laser-activatable CuS nanodots to treat multidrug-resistant bacteria and release copper ion to accelerate healing of infected chronic nonhealing wounds [J]. ACS Appl. Mater. Interfaces, 2019, 11: 3809
doi: 10.1021/acsami.8b21766
|
189 |
Yin W Y, Yu J, Lv F T, et al. Functionalized nano-MoS2 with peroxidase catalytic and near-infrared photothermal activities for safe and synergetic wound antibacterial applications [J]. ACS Nano, 2016, 10: 11000
doi: 10.1021/acsnano.6b05810
|
190 |
Cheng W, Zeng X W, Chen H Z, et al. Versatile polydopamine platforms: Synthesis and promising applications for surface modification and advanced nanomedicine [J]. ACS Nano, 2019, 13: 8537
doi: 10.1021/acsnano.9b04436
pmid: 31369230
|
191 |
Lei W X, Ren K F, Chen T T, et al. Polydopamine nanocoating for effective photothermal killing of bacteria and fungus upon near-infrared irradiation [J]. Adv. Mater. Interfaces, 2016, 3: 1600767
doi: 10.1002/admi.201600767
|
192 |
Yuan Z, Tao B L, He Y, et al. Biocompatible MoS2/PDA-RGD coating on titanium implant with antibacterial property via intrinsic ROS-independent oxidative stress and NIR irradiation [J]. Biomaterials, 2019, 217: 119290
doi: 10.1016/j.biomaterials.2019.119290
|
193 |
Xie X Z, Mao C Y, Liu X M, et al. Synergistic bacteria killing through photodynamic and physical actions of graphene oxide/Ag/collagen coating [J]. ACS Appl. Mater. Interfaces, 2017, 9: 26417
doi: 10.1021/acsami.7b06702
|
194 |
Wang D, Niu L J, Qiao Z Y, et al. Synthesis of self-assembled porphyrin nanoparticle photosensitizers [J]. ACS Nano, 2018, 12: 3796
doi: 10.1021/acsnano.8b01010
|
195 |
Zhu Y W, Xu C, Zhang N, et al. Polycationic synergistic antibacterial agents with multiple functional components for efficient anti-infective therapy [J]. Adv. Funct. Mater., 2018, 28: 1706709
doi: 10.1002/adfm.201706709
|
196 |
Deng Q Q, Sun P P, Zhang L, et al. Porphyrin MOF dots-based, function-adaptive nanoplatform for enhanced penetration and photodynamic eradication of bacterial biofilms [J]. Adv. Funct. Mater., 2019, 29: 1903018
doi: 10.1002/adfm.201903018
|
197 |
Su K, Tan L, Liu X M, et al. Rapid photo-sonotherapy for clinical treatment of bacterial infected bone implants by creating oxygen deficiency using sulfur doping [J]. ACS Nano, 2020, 14: 2077
doi: 10.1021/acsnano.9b08686
|
198 |
Feng Z Z, Liu X M, Tan L, et al. Electrophoretic deposited stable chitosan@MoS2 coating with rapid in situ bacteria-killing ability under dual-light irradiation [J]. Small, 2018, 14: 1704347
doi: 10.1002/smll.201704347
|
199 |
Yuan Z, Tao B L, He Y, et al. Remote eradication of biofilm on titanium implant via near-infrared light triggered photothermal/photodynamic therapy strategy [J]. Biomaterials, 2019, 223: 119479
doi: 10.1016/j.biomaterials.2019.119479
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|