Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (2): 246-250    DOI: 10.3724/SP.J.1037.2010.00405
论文 Current Issue | Archive | Adv Search |
LENGTH SCALE DEPENDENT DUCTILITY AND FRACTURE BEHAVIOR OF Cu/Nb NANOSTRUCTURED METALLIC MULTILAYERS
ZHANG Xin, ZHANG Jinyu, LIU Gang, ZHANG Guojun, SUN Jun
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049
Cite this article: 

ZHANG Xin ZHANG Jinyu LIU Gang ZHANG Guojun SUN Jun. LENGTH SCALE DEPENDENT DUCTILITY AND FRACTURE BEHAVIOR OF Cu/Nb NANOSTRUCTURED METALLIC MULTILAYERS. Acta Metall Sin, 2011, 47(2): 246-250.

Download:  PDF(744KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  By using uniaxial tensile test combining the $in~situ$ electrical resistance change method, the influence of modulation period with a wide range spanning from 10 to 250 nm on the ductility and fracture toughness of Cu/Nb nanostructured metallic multilayers on polyimide substrate was measured. The microstructural analysis revealed that the modulation structure of Cu/Nb metallic multilayers was clear and no intermixing between Cu and Nb was been found by using line scanning analysis. The experimental results indicated that both ductility and fracture toughness of the multilayer film exhibited a nonmonotonic change with decreasing modulation period, and reached maximum values at a critical modulation period of about 50 nm. This was attributed to the competing effect between the size of the microcracks initiated in the Nb layer and the role of the Cu layer in blocking crack propagation. This competing effect was qualitatively assessed on basis of fracture mechanics.
Key words:  nanostructured multilayers      modulation period      ductility      fracture toughness     
Received:  13 August 2010     
ZTFLH: 

TG113

 
Fund: 

Supported by National Basic Research Program of China (No.2010CB631003) and National Natural Science Foundation of China (No. 50971097)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00405     OR     https://www.ams.org.cn/EN/Y2011/V47/I2/246

[1] Spearing S M. Acta Mater, 2000; 48: 179

[2] Suo Z G, Vlassak J, Wagner S. China Particuology, 2005; 3: 321

[3] Bakonyi I, P´eter L. Prog Mater Sci, 2010; 55(3): 107

[4] Was G S, Foecke T. Thin Solid Films, 1996; 286: 1

[5] Misra A, Krug H. Adv Eng Mater, 2001; 3(4): 217

[6] Misra A, Hirth J P, Hoagland R G. Acta Mater, 2005; 53: 4817

[7] Phillips M A, Clemens B M, Nix W D. Acta Mater, 2003; 51: 3171

[8] Huang H B, Spaepen F. Acta Mater, 2000; 48: 3261

[9] Mara N A, Bhattacharyya D, Hoagland R G, Misra A. Scr Mater, 2008; 58: 874

[10] Niu R M, Liu G, Wang C, Zhang G, Ding X D. Appl Phys Lett, 2007; 90: 161907

[11] Li Y P, Tan J, Zhang G P. Scr Mater, 2008; 59: 1226

[12] Li Y P, Zhang G P. Acta Mater, 2010; 58: 3877

[13] Zhu X F, Li Y P, Zhang G P, Tan J, Liu Y. Appl Phys Lett, 2008; 92: 161905

[14] Yu D Y W, Spaepen F. J Appl Phys, 2004; 95: 2991

[15] Zhang J Y, Zhang X, Liu G, Zhang G J, Sun J. Scr Mater, 2010; 63: 101

[16] Hertzberg R W. Deformation and Fracture Mechanics of Engineering Materials. New York: John Wiley, 1989: 15

[17] Dundurs J, Bogy D B. J Appl Mech, 1969; 36: 650

[18] Jr Beuth J L. Int J Solids Struct, 1992; 29: 1657
[1] GU Ruicheng, ZHANG Jian, ZHANG Mingyang, LIU Yanyan, WANG Shaogang, JIAO Da, LIU Zengqian, ZHANG Zhefeng. Fabrication of Mg-Based Composites Reinforced by SiC Whisker Scaffolds with Three-Dimensional Interpenetrating-Phase Architecture and Their Mechanical Properties[J]. 金属学报, 2022, 58(7): 857-867.
[2] LI Min, LI Haoze, WANG Jijie, MA Yingche, LIU Kui. Effect of Ce on the Microstructure, High-Temperature Tensile Properties, and Fracture Mode of Strip Casting Non-Oriented 6.5%Si Electrical Steel[J]. 金属学报, 2022, 58(5): 637-648.
[3] YU Chun, XU Jijin, WEI Xiao, LU Hao. Research Status of Ductility-Dip Crack Occurring in Nuclear Nickel-Based Welding Materials[J]. 金属学报, 2022, 58(4): 529-540.
[4] HU Chen, PAN Shuai, HUANG Mingxin. Strong and Tough Heterogeneous TWIP Steel Fabricated by Warm Rolling[J]. 金属学报, 2022, 58(11): 1519-1526.
[5] ZHANG Xiancheng, ZHANG Yong, LI Xiao, WANG Zimeng, HE Chenyun, LU Tiwen, WANG Xiaokun, JIA Yunfei, TU Shantung. Design and Manufacture of Heterostructured Metallic Materials[J]. 金属学报, 2022, 58(11): 1399-1415.
[6] ZHAO Yonghao, MAO Qingzhong. Toughening of Nanostructured Metals[J]. 金属学报, 2022, 58(11): 1385-1398.
[7] WU Xiaolei, ZHU Yuntian. Heterostructured Metallic Materials: Plastic Deformation and Strain Hardening[J]. 金属学报, 2022, 58(11): 1349-1359.
[8] SUN Shijie, TIAN Yanzhong, ZHANG Zhefeng. Strengthening and Toughening Mechanisms of Precipitation- Hardened Fe53Mn15Ni15Cr10Al4Ti2C1 High-Entropy Alloy[J]. 金属学报, 2022, 58(1): 54-66.
[9] CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology[J]. 金属学报, 2021, 57(9): 1141-1154.
[10] YI Hongliang,CHANG Zhiyuan,CAI Helong,DU Pengju,YANG Dapeng. Strength, Ductility and Fracture Strain ofPress-Hardening Steels[J]. 金属学报, 2020, 56(4): 429-443.
[11] WANG Cunyu,CHANG Ying,ZHOU Fengluan,CAO Wenquan,DONG Han,WENG Yuqing. M3 Microstructure Control Theory and Technology of the Third-Generation Automotive Steels with HighStrength and High Ductility[J]. 金属学报, 2020, 56(4): 400-410.
[12] Dong PAN, Yuguang ZHAO, Xiaofeng XU, Yitong WANG, Wenqiang JIANG, Hong JU. Effect of High-Energy and Instantaneous Electropulsing Treatment on Microstructure and Propertiesof 42CrMo Steel[J]. 金属学报, 2018, 54(9): 1245-1252.
[13] Yizhe LI, Baoming GONG, Xiuguo LIU, Dongpo WANG, Caiyan DENG. Out-of-Plane Constraint Effect on the Fracture Toughness of Single Edge Notch Tension Specimens[J]. 金属学报, 2018, 54(12): 1785-1791.
[14] Xuan YU, Zhihao ZHANG, Jianxin XIE. Microstructure, Ordered Structure and Warm TensileDuctility of Fe-6.5%Si Alloy with Various Ce Content[J]. 金属学报, 2017, 53(8): 927-936.
[15] Kai WANG,Liu LIU,Tingdong XU,Xuedong DONG. Mechanism Study on Hot Ductility of 2.25Cr1Mo Alloy Based on Non-Equilibrium Grain-Boundary Segregation[J]. 金属学报, 2017, 53(3): 345-350.
No Suggested Reading articles found!