Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (7): 868-882    DOI: 10.11900/0412.1961.2021.00048
Research paper Current Issue | Archive | Adv Search |
Interfacial Reaction Between Nickel-Based Superalloy K417G and Oxide Refractories
SONG Qingzhong1,2, QIAN Kun1,3, SHU Lei1,3, CHEN Bo1,3(), MA Yingche1,3, LIU Kui1,3
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Metallurgy, Northeastern University, Shenyang 110819, China
3.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

SONG Qingzhong, QIAN Kun, SHU Lei, CHEN Bo, MA Yingche, LIU Kui. Interfacial Reaction Between Nickel-Based Superalloy K417G and Oxide Refractories. Acta Metall Sin, 2022, 58(7): 868-882.

Download:  HTML  PDF(5547KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

High-performance nickel-based superalloys are highly desired in the aerospace industry. A drawback of vacuum induction melting for processing nickel-based superalloys is that oxide refractories contaminate the molten alloy through crucible-melt interaction. Therefore, crucibles used for producing nickel-based superalloys should be carefully selected to avoid melt contamination. In this study, the interfacial reaction between a molten nickel-based superalloy (K417G) and various oxide refractories, including Al2O3, CaO, MgO, ZrO2 + 12%Y2O3 (mass fraction) (Y-PSZ), ZrO2 + 20%CaO (CSZ), and Y2O3, formed by cold isostatic pressing was investigated at 1600oC by XRD, SEM, and EDS. The effects of the oxide crucibles on the impurity contents of K417G were also evaluated. The results show that physical erosion is the primary mechanism of the interaction between Al2O3 crucibles and alloy melt. The readily detached Al2O3 particles formed inclusions in the alloy. The Ca3Al2O6 liquid phase generated at the melt-crucible interface promoted wettability between the alloy and CaO crucible, resulting in a high adhesion at the interface. The reaction of the MgO crucible with Al in the alloy resulted in the formation of MgAl2O4 at the melt-crucible interface, which subsequently entered the alloy to form inclusions. Al2O3 was generated at the Y-PSZ-crucible-alloy interface. However, there was no corrosion of Al2O3 in the Y-PSZ crucible, indicating the crucible exhibits excellent corrosion resistance to Al2O3 slags. The interaction between the CSZ crucible and alloy melt generated a CaAl2O4 liquid phase, making the crucible unstable to dissolve into the alloy. An Al2Y4O9 reaction layer is mainly formed at the Y2O3-crucible-alloy interface. The dissolution of Y2O3 into the alloy melt was high compared to that of other oxide refractories. The melt-crucible interaction also significantly affected the oxygen content of K417G. The oxygen concentration of the alloy fused by CaO, Y2O3, and Y-PSZ crucibles did not increase, whereas that of the alloy melted in CSZ, MgO, and Al2O3 crucibles increased from 0.0007% to 0.0011%, 0.0034%, and 0.0135%, respectively.

Key words:  interfacial reaction      K417G      refractory      Al2O3      CaO      MgO      ZrO2      Y2O3     
Received:  26 January 2021     
ZTFLH:  TG146.1  
About author:  CHEN Bo, professor, Tel: (024)83971986, E-mail: bchen@imr.ac.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00048     OR     https://www.ams.org.cn/EN/Y2022/V58/I7/868

Raw materialPurity / (mass fraction, %)
Al2O3≥ 99.61, MgO ≤ 0.10, SiO2 ≤ 0.13, CaO ≤ 0.16, Fe2O3 ≤ 0.002, TiO2 ≤ 0.01, Na2O ≤ 0.03
CaO≥ 96.78, MgO ≤ 0.53, Al2O3 ≤ 0.20, SiO2 ≤ 0.05, TFe ≤ 0.01, TiO2 ≤ 0.014, S ≤ 0.001, Loss ≤ 2.01
MgO≥ 98.5, Fe ≤ 0.005, Ba ≤ 0.003, Cl- ≤ 0.07, SO 42- ≤0.05, Pb ≤ 0.005, Loss ≤ 4.5,
Y2O3≥ 99.99, Loss ≤ 0.01
ZrO2≥ 99.0, Fe2O3 ≤ 0.005, MgO ≤ 0.05, CaO ≤ 0.05, TiO2 ≤ 0.005, SiO2 ≤ 0.01, Loss ≤ 1
Table 1  Purities of raw materials for manufacturing oxide crucibles
CrucibleCompositionPressureSintering temperatureApparent porosityBulk density
(mass fraction)MPa%g·cm-3
Al2O3100%28016801.263.76
CaO100%28016801.233.00
MgO100%28016801.233.40
Y-PSZ12%Y2O3 + 88%ZrO2280168015.004.94
CSZ20%CaO + 80%ZrO2280168028.003.50
Y2O3100%280168021.503.94
Table 2  Process parameters forming oxide crucibles, apparent porosity, and bulk density
Fig.1  Schematic diagram of experiment equipment
Fig.2  XRD spectra of various oxide crucibles after sintering
(a) Al2O3 and MgO
(b) CaO and Y2O3
(c) Y-PSZ and CSZ (m—monoclinic, t—tetragonal, c—cubic)
Fig.3  Macromorphology of nickel-based superalloy K417G smelted by Al2O3 crucible
Fig.4  Al2O3 inclusions flowed at the liquid surface
Fig.5  SEM image (a) and EDS mappings (b-f) of the interface between Al2O3 crucible and nickel-based superalloy K417G
LocationOAlCaMgTiNi
A54.2741.123.310.450.300.55
B55.7944.210.000.000.000.00
Table 3  Chemical compositions of the interface between Al2O3 crucible and K417G alloy in Fig.5a by EDS analysis
Fig.6  SEM image (a) and EDS mappings (b-f) of the interface between CaO crucible and nickel-based superalloy K417G
LocationOAlCaTiVCoNi
C49.3920.0430.150.040.070.070.24
D64.920.0034.970.080.000.000.03
Table 4  Chemical compositions of the interface between CaO crucible and K417G alloy in Fig.6d by EDS analysis
Fig.7  Macromorphology of nickel-based superalloy K417G smelted by CaO crucible
Fig.8  SEM image (a) and EDS mappings (b-f) of the interface between MgO crucible and nickel-based superalloy K417G
LocationOAlMgCrNi
E50.9132.7316.120.090.15
F43.410.1756.210.080.13
Table 5  Chemical compositions of the interface between MgO crucible and K417G alloy in Fig.8a by EDS analysis
Fig.9  MgAl2O4 inclusions flowed at the liquid surface
Fig.10  SEM image (a) and EDS mappings (b-f) of the interface between Y-PSZ crucible and nickel-based superalloy K417G
LocationOAlZrYTiCrCoNi
G57.9941.780.000.000.110.000.000.12
H62.330.4731.265.150.100.240.110.34
Table 6  Chemical composition of the interface between Y-PSZ crucible and K417G alloy in Fig.10a by EDS analysis
Fig.11  Al2O3 inclusions flowed at the liquid surface smelted by Y-PSZ crucible
Fig.12  SEM images (a) and EDS mappings (b-f) of the interface between CSZ crucible and nickel-based superalloy K417G
LocationOAlCaZrTiCrCoNi
I56.330.270.2039.750.080.420.452.50
J60.280.100.2238.390.070.000.000.95
K50.6127.2516.954.540.140.010.170.34
L70.040.005.2324.740.000.000.000.00
M63.4323.7711.511.290.000.000.000.00
N60.070.0017.9321.320.270.000.000.00
O61.940.006.6531.410.000.000.000.00
Table 7  Chemical composition of the interface between CSZ crucible and K417G alloy by EDS analysis (See points in Figs.12-14)
Fig.13  Backscattered electron (BSE) image (a) and EDS mappings (b-d) of CSZ crucible after smelting nickel-based superalloy K417G
Fig.14  BSE image of original micromorphology of CSZ crucible
Fig.15  Macromorphology of nickel-based superalloy K417G smelted by CSZ crucible
Fig.16  SEM image (a) and EDS mappings (b-f) of the interface between Y2O3 crucible and nickel-based superalloy K417G
Fig.17  BSE images of interface between Y2O3 crucible and K417G alloy (a) and K417G alloy (b) smelted by Y2O3 crucible (Insets are EDS mappings of segregation regions of Y inside K417G alloy)
LocationOAlYTiCrCoNi
P57.2313.4528.700.150.040.060.37
Q56.050.0043.820.000.030.050.05
Table 8  Chemical compositions of the interface between Y2O3 crucible and K417G alloy in Fig.17a by EDS analysis
CrucibleOAlCaMgZrY
Al2O30.01355.25----
CaO0.0006-0.0010---
MgO0.0034--0.0090--
Y-PSZ0.0008---0.068< 0.0010
CSZ0.0011-0.0008-1.760-
Y2O30.0007----0.0150
Table 9  Impurity element contents of nickel-based superalloy K417G after melting
Fig.18  Relationships between the formation Gibbs free energy (ΔGθ ) of various oxide materials and temperatures
1 Shi C X, Zhong Z Y. Development and innovation of superalloy in China [J]. Acta Metall. Sin., 2010, 46: 1281
doi: 10.3724/SP.J.1037.2010.01281
师昌绪, 仲增墉. 我国高温合金的发展与创新 [J]. 金属学报, 2010, 46: 1281
doi: 10.3724/SP.J.1037.2010.00309
2 Akca E, Gürsel A. A review on superalloys and IN718 nickel-based INCONEL superalloy [J]. Period. Eng. Nat. Sci., 2015, 3: 15
3 Huang Q Y, Li H K. Superalloy [M]. Beijing: Metallurgical Industry Press, 2000: 4
黄乾尧, 李汉康. 高温合金 [M]. 北京: 冶金工业出版社, 2000: 4
4 Jiang Z H, Zhang X F, Liu F B, et al. Harmful impurities control of raw material used in Ni-based superalloy production [J]. Iron Steel, 2017, 52(9): 1
姜周华, 张新法, 刘福斌 等. 镍基高温合金生产用原材料有害杂质的控制 [J]. 钢铁, 2017, 52(9): 1
5 Niu J P, Sun X F, Jin T, et al. Super refining of superalloys by VIM [J]. Mater. Rev., 2001, 15(11): 27
doi: 10.1179/imr.1970.15.1.27
牛建平, 孙晓峰, 金 涛 等. 高温合金的真空感应超纯净熔炼 [J]. 材料导报, 2001, 15(11): 27
6 Wan X J, Zhang H X, Yu A, et al. Superrefining of Ni-base superalloy by VIDP [J]. Vacuum, 2018, 55(3): 48
万旭杰, 张华霞, 于 昂 等. 镍基高温合金VIDP真空超纯净熔炼 [J]. 真空, 2018, 55(3): 48
7 Li N. Reaction Between Refractory and Steel and Its Effect on Steel Quality [M]. Beijing: Metallurgical Industry Press, 2005: 26
李 楠. 耐火材料与钢铁的反应及对钢质量的影响 [M]. 北京: 冶金工业出版社, 2005: 26
8 Xie K W, Chen B, Zhang M S, et al. Desulfurization mechanism of K4169 superalloy using CaO crucible in vacuum induction melting process [A]. High Performance Structural Materials [C]. Yinchuan, China: Springer, 2017: 575
9 Niu J P, Yang K N, Sun X F, et al. Investigation on deoxidation during VIM refining Ni-base superalloy by using CaO crucible [J]. Acta Metall. Sin., 2002, 38: 303
牛建平, 杨克努, 孙晓峰 等. 用CaO坩埚真空感应熔炼镍基高温合金脱氧研究 [J]. 金属学报, 2002, 38: 303
10 Song R K, Ma D, Wu S J. Microstructure, mechanical properties and thermal fatigue behavior of K417G alloy used in turbine guide vane [J]. Rare Met. Mater. Eng., 2019, 48: 1517
宋若康, 马 东, 吴素君. K417G服役涡轮导向叶片的组织性能及热疲劳损伤机理分析 [J]. 稀有金属材料与工程, 2019, 48: 1517
11 Choudhury A. State of the art of superalloy production for aerospace and other application using VIM/VAR or VIM/ESR [J]. ISIJ Int., 1992, 32: 563
doi: 10.2355/isijinternational.32.563
12 Qian K, Chen B, Shu L, et al. Nitrogen solubility in liquid Ni-V, Ni-Ta, Ni-Cr-V, and Ni-Cr-Ta alloys [J]. Metals, 2019, 9: 1184
doi: 10.3390/met9111184
13 Qian K, Chen B, Zhang L, et al. Kinetics study of nitrogen removal from liquid IN718 alloy during vacuum induction melting [J]. Vacuum, 2020, 179: 109521
doi: 10.1016/j.vacuum.2020.109521
14 Bodnar R L, Ohhashi T, Jaffee R I. Effects of Mn, Si, and purity on the design of 3.5NiCrMoV, 1CrMoV, and 2.25Cr-1Mo bainitic alloy steels [J]. Metall. Mater. Trans., 1989, 20A: 1445
15 Yue J B. Technical progress and characteristics of vacuum induction melting furnaces [J]. Shanxi Metall., 2017, 40(2): 33
岳江波. 真空感应熔炼炉工艺特点及其技术进展 [J]. 山西冶金, 2017, 40(2): 33
16 Fashu S, Lototskyy M, Davids M W, et al. A review on crucibles for induction melting of titanium alloys [J]. Mater. Des., 2020, 186: 108295
doi: 10.1016/j.matdes.2019.108295
17 Zhu S G, Li L, Chang T Q, et al. Effect of impurity elements on microstructure and castability of directionally solidified superalloy DZ125L [J]. Non-Ferrous Mining Metall., 2017, 33(6): 31
朱石刚, 李 琳, 常涛歧 等. 杂质元素含量对定向凝固镍基高温合金DZ125L微观组织及铸造性能的影响 [J]. 有色矿冶, 2017, 33(6): 31
18 Jiang L, Guo S Q, Bian Y Y, et al. Interfacial behaviors of magnesia partially stabilized zirconia with nickel-based superalloy [J]. Mater. Lett., 2016, 181: 313
doi: 10.1016/j.matlet.2016.06.029
19 Li J P, Zhang H R, Gao M, et al. High-temperature wettability and interactions between Y-containing Ni-based alloys and various oxide ceramics [J]. Materials, 2018, 11: 749
doi: 10.3390/ma11050749
20 Li Q, Song J X, Wang D G, et al. Effect of Cr, Hf and temperature on interface reaction between nickel melt and silicon oxide core [J]. Rare Met., 2011, 30: 405
doi: 10.1007/s12598-011-0313-6
21 Valenza F, Nowak R, Sobczak N, et al. Interactions between superalloys and mould materials for investment casting of turbine blades [J]. Adv. Sci. Technol., 2010, 70: 130
22 Yao J S, Tang D Z, Liu X G, et al. Interaction between two Ni-base alloys and ceramic moulds [J]. Mater. Sci. Forum, 2013, 747-748: 765
doi: 10.4028/www.scientific.net/MSF.747-748.765
23 Hu B Y, Xu Y Q, Zhang H D. Special Refractory Practical Technical Manuals [M]. Beijing: Metallurgical Industry Press, 2004: 1
胡宝玉, 徐延庆, 张宏达. 特种耐火材料实用技术手册 [M]. 北京: 冶金工业出版社, 2004: 1
24 Kostov A, Friedrich B. Predicting thermodynamic stability of crucible oxides in molten titanium and titanium alloys [J]. Comput. Mater. Sci., 2006, 38: 374
doi: 10.1016/j.commatsci.2006.03.006
25 Gomes F, Barbosa J, Ribeiro C S. Induction melting of γ-TiAl in CaO crucibles [J]. Intermetallics, 2008, 16: 1292
doi: 10.1016/j.intermet.2008.08.008
26 Chen B, Ma Y C, Gao M, et al. Changes of oxygen content in molten TiAl alloys as a function of superheat during vacuum induction melting [J]. J. Mater. Sci. Technol., 2010, 26: 900
doi: 10.1016/S1005-0302(10)60144-2
27 Sakamoto K, Yoshikawa K, Kusamichi T, et al. Changes in oxygen contents of titanium aluminides by vacuum induction, cold crucible induction and electron-beam melting [J]. ISIJ Int., 1992, 32: 616
doi: 10.2355/isijinternational.32.616
28 Tetsui T, Kobayashi T, Kishimoto A, et al. Structural optimization of an yttria crucible for melting TiAl alloy [J]. Intermetallics, 2012, 20: 16
doi: 10.1016/j.intermet.2011.08.026
29 Gao M, Cui R J, Ma L M, et al. Physical erosion of yttria crucibles in Ti-54Al alloy casting process [J]. J. Mater. Process. Technol., 2011, 211: 2004
doi: 10.1016/j.jmatprotec.2011.06.021
30 Gao P Y, Liu Y Z, Ren Y, et al. Evaluation of the microstructure and property of TiNi SMA prepared using VIM in BaZrO3 crucible [J]. Vacuum, 2019, 168: 108843
doi: 10.1016/j.vacuum.2019.108843
31 Meng D Z, Chen G Y, Zhang R L, et al. Preparation of Y2O3 doped SrZrO3 refractory and study on its interface reaction with molten TiNi alloys [J]. Key Eng. Mater., 2018, 768: 256
doi: 10.4028/www.scientific.net/KEM.768.256
32 Kabiri Y, Kermanpur A, Foroozmehr A. Comparative study on microstructure and homogeneity of NiTi shape memory alloy produced by copper boat induction melting and conventional vacuum arc melting [J]. Vacuum, 2012, 86: 1073
doi: 10.1016/j.vacuum.2011.09.012
33 Li C H, He J, Zhang Z, et al. Preparation of TiFe based alloys melted by CaO crucible and its hydrogen storage properties [J]. J. Alloys Compd., 2015, 618: 679
doi: 10.1016/j.jallcom.2014.08.154
34 Wei J W, Han B Q, Wang X C, et al. Improvement in hydration resistance of CaO granules based on CaO-TiO2, CaO-ZrO2 and CaO-V2O5 systems [J]. Mater. Chem. Phys., 2020, 254: 123413
doi: 10.1016/j.matchemphys.2020.123413
35 Chen Z Y. Chemical Thermodynamics of Refractories [M]. Beijing: Metallurgical Industry Press, 2008: 423
陈肇友. 化学热力学与耐火材料 [M]. 北京: 冶金工业出版社, 2008: 423
36 Boniecki M, Librant Z, Wesołowski W, et al. The thermal shock resistance of Y2O3 ceramics [J]. Ceram. Int., 2016, 42: 10215
doi: 10.1016/j.ceramint.2016.03.140
37 Cheng X, Yuan C, Green N R, et al. Sintering mechanisms of yttria with different additives [J]. Ceram. Int., 2013, 39: 4791
doi: 10.1016/j.ceramint.2012.11.069
38 Jiang L, Guo S Q, Qiao M R, et al. Study on the structure and mechanical properties of magnesia partially stabilized zirconia during cyclic heating and cooling [J]. Mater. Lett., 2017, 194: 26
doi: 10.1016/j.matlet.2017.01.135
39 Schafföner S. Reactions of alkaline earth zirconate refractories with titanium alloys [A]. The 14th World Conference on Titanium (Ti 2019) [C]. Nantes, France: EDP Sciences, 2020: 10012
40 Schafföner S, Fruhstorfer J, Ludwig S, et al. Cyclic cold isostatic pressing and improved particle packing of coarse grained oxide ceramics for refractory applications [J]. Ceram. Int., 2018, 44: 9027
doi: 10.1016/j.ceramint.2018.02.106
41 Chang Y W, Lin C C. Compositional dependence of phase formation mechanisms at the interface between titanium and calcia-stabilized zirconia at 1550oC [J]. J. Am. Ceram. Soc., 2010, 93: 3893
doi: 10.1111/j.1551-2916.2010.03946.x
42 Lin C C, Chang Y W, Lin K L, et al. Effect of yttria on interfacial reactions between titanium melt and hot-pressed yttria/zirconia composites at 1700oC [J]. J. Am. Ceram. Soc., 2008, 91: 2321
doi: 10.1111/j.1551-2916.2008.02428.x
43 Chen Z Y. Phase Diagrams of Refractories [M]. Beijing: Metallurgical Industry Press, 2014: 32
陈肇友. 相图与耐火材料 [M]. 北京: 冶金工业出版社, 2014: 32
44 Kishimoto Y, Utada S, Iguchi T, et al. Desulfurization model using solid CaO in molten Ni-based superalloys containing Al [J]. Metall. Mater. Trans., 2020, 51B: 293
45 Kumar G, Prabhu K N. Review of non-reactive and reactive wetting of liquids on surfaces [J]. Adv. Colloid Interface Sci., 2007, 133: 61
doi: 10.1016/j.cis.2007.04.009
46 Wan C, Kritsalis P, Drevet B, et al. Optimization of wettability and adhesion in reactive nickel-based alloys/alumina systems by a thermodynamic approach [J]. Mater. Sci. Eng., 1996, A207: 181
47 Sadrnezhad S K, Raz S B. Interaction between refractory crucible materials and the melted NiTi shape-memory alloy [J]. Metall. Mater. Trans., 2005, 36B: 395
48 Zhang T, Wei Y W, Chen J F, et al. Preparation of CaO-MgO-ZrO2 refractory and its desulfurization effect on Ni-based alloy in vacuum induction melting (VIM) [J]. J. Aust. Ceram. Soc., 2020, 56: 885
doi: 10.1007/s41779-019-00421-8
49 Gao X Y, Zhang L, Qu X H, et al. Effect of interaction of refractories with Ni-based superalloy on inclusions during vacuum induction melting [J]. Int. J. Miner. Metall. Mater., 2020, 27: 1551
doi: 10.1007/s12613-020-2098-9
50 Durov A V, Naidich Y V, Kostyuk B D. Investigation of interaction of metal melts and zirconia [J]. J. Mater. Sci., 2005, 40: 2173
doi: 10.1007/s10853-005-1928-5
51 Zi Y, Meng J, Zhang C W, et al. Effect of Y content on interface reaction and wettability between a nickel-base single crystal superalloy melt and ceramic mould [J]. J. Alloys Compd., 2019, 789: 472
doi: 10.1016/j.jallcom.2019.03.037
52 Liu Q M, Huang S Z, Liu F, et al. Effect of boron content on microstructure evolution during solidification and mechanical properties of K417G alloy [J]. Acta Metall. Sin., 2019, 55: 720
刘巧沐, 黄顺洲, 刘 芳 等. B含量对K417G合金凝固过程中组织演变和力学性能的影响 [J]. 金属学报, 2019, 55: 720
53 Tetsui T, Kobayashi T, Mori T, et al. Evaluation of yttria applicability as a crucible for induction melting of TiAl alloy [J]. Mater. Trans., 2010, 51: 1656
doi: 10.2320/matertrans.MAW201002
54 Li J P, Zhang H R, Gao M, et al. Effect of vacuum level on the interfacial reactions between K417 superalloy and Y2O3 crucibles [J]. Vacuum, 2020, 182: 109701
doi: 10.1016/j.vacuum.2020.109701
55 Ye D L, Hu J H. Thermodynamic Data Sheet of Practical Inorganic [M]. 2nd Ed., Beijing: Metallurgical Industry Press, 2002: 1
叶大伦, 胡建华. 实用无机物热力学数据手册 [M]. 第 2版, 北京: 冶金工业出版社, 2002: 1
56 Chen X Y, Jin Z, Bai X F, et al. Effect of C on the interfacial reaction and wettability between a Ni-based superalloy and ceramic mould [J]. Acta Metall. Sin., 2015, 51: 853
陈晓燕, 金 喆, 白雪峰 等. C对一种镍基高温合金与陶瓷型壳界面反应及润湿性的影响 [J]. 金属学报, 2015, 51: 853
[1] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[2] SHEN Yingying, ZHANG Guoxing, JIA Qing, WANG Yumin, CUI Yuyou, YANG Rui. Interfacial Reaction and Thermal Stability of the SiCf/TiAl Composites[J]. 金属学报, 2022, 58(9): 1150-1158.
[3] HAN Linzhi, MU Juan, ZHOU Yongkang, ZHU Zhengwang, ZHANG Haifeng. Effect of Heat Treatment Temperature on Microstructure and Mechanical Properties of Ti0.5Zr1.5NbTa0.5Sn0.2 High-Entropy Alloy[J]. 金属学报, 2022, 58(9): 1159-1168.
[4] XU Liujie, ZONG Le, LUO Chunyang, JIAO Zhaolin, WEI Shizhong. Toughening Pathways and Regulatory Mechanisms of Refractory High-Entropy Alloys[J]. 金属学报, 2022, 58(3): 257-271.
[5] LI Tianxin, LU Yiping, CAO Zhiqiang, WANG Tongmin, LI Tingju. Opportunity and Challenge of Refractory High-Entropy Alloys in the Field of Reactor Structural Materials[J]. 金属学报, 2021, 57(1): 42-54.
[6] WANG Chao, ZHANG Xu, WANG Yumin, YANG Qing, YANG Lina, ZHANG Guoxing, WU Ying, KONG Xu, YANG Rui. Mechanisms of Interfacial Reaction and Matrix Phase Transition in SiCf /Ti65 Composites[J]. 金属学报, 2020, 56(9): 1275-1285.
[7] SONG Qianting, XU Yingkun, XU Jian. Dry-Sliding Wear Behavior of (TiZrNbTa)90Mo10 High-Entropy Alloy Against Al2O3[J]. 金属学报, 2020, 56(11): 1507-1520.
[8] ZHANG Zhijie, HUANG Mingliang. In Situ Study on Liquid-Solid Electromigration Behavior in Cu/Sn-37Pb/Cu Micro-Interconnect[J]. 金属学报, 2020, 56(10): 1386-1392.
[9] Qiaomu LIU,Shunzhou HUANG,Fang LIU,Yan YANG,Hongqiang NAN,Dong ZHANG,Wenru SUN. Effect of Boron Content on Microstructure Evolution During Solidification and Mechanical Properties of K417G Alloy[J]. 金属学报, 2019, 55(6): 720-728.
[10] Yongli JIN,Hai YU,Jieyu ZHANG,Zengwu ZHAO. Effects of Magnetic Field on Reduction of CaOContaining Iron Oxides[J]. 金属学报, 2019, 55(3): 410-416.
[11] Feng QIU, Haotian TONG, Ping SHEN, Xiaoshuang CONG, Yi WANG, Qichuan JIANG. Overview: SiC/Al Interface Reaction and Interface Structure Evolution Mechanism[J]. 金属学报, 2019, 55(1): 87-100.
[12] Cean GUO, Minghui CHEN, Yimin LIAO, Bei SU, Dongbai XIE, Shenglong ZHU, Fuhui WANG. Protection Mechanism Study of Enamel-Based Composite Coatings Under the Simulated Combusting Gas Shock[J]. 金属学报, 2018, 54(12): 1825-1832.
[13] Ning ZHAO,Jianfeng DENG,Yi ZHONG,Luqiao YIN. Evolution of Interfacial Intermetallic Compounds in Ni/Sn-xCu/Ni Micro Solder Joints Under Thermomigration During Soldering[J]. 金属学报, 2017, 53(7): 861-868.
[14] Zhijie ZHANG,Mingliang HUANG. Liquid-Solid Electromigration Behavior of Cu/Sn-52In/Cu Micro-Interconnect[J]. 金属学报, 2017, 53(5): 592-600.
[15] Peng JIN,Ran SUI,Fuxiang LI,Weiyuan YU,Qiaoli LIN. Reactive Wetting of TC4 Titanium Alloy by Molten 6061 Al and 4043 Al Alloys[J]. 金属学报, 2017, 53(4): 479-486.
No Suggested Reading articles found!