Please wait a minute...
Acta Metall Sin  2019, Vol. 55 Issue (1): 73-86    DOI: 10.11900/0412.1961.2018.00316
Orginal Article Current Issue | Archive | Adv Search |
Recent Progress on Magnesium Matrix Composites Reinforced by Carbonaceous Nanomaterials
Xiaojun WANG, Yeyang XIANG, Xiaoshi HU, Kun WU()
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150000, China
Download:  HTML  PDF(8159KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs) with ultra-high mechanical properties are attractive reinforcements to fabricate light weight, high strength metal matrix composites. In this paper, research progress on CNTs/GNPs reinforced magnesium matrix composites is systematically reviewed. This review focuses on the recent development of the preparation techniques, strengthening and toughening mechanism, interface structure of magnesium matrix composites reinforced by carbonaceous nanomaterials. Four kinds of preparation techniques are introduced, including powder metallurgy, stirring casting, disintegrated melt deposition and friction stir process. The yield strength of composites increases with the addition of GNPs/CNTs. Several possible factors can contribute to this: (1) grain size refinement; (2) load-transfer effects; (3) generation of the dislocation density due to strain generated by the thermal expansion mismatch between the matrix and GNPs/CNTs; (4) Orowan strengthening caused by the resistance of closely spaced GNPs/CNTs to the passing of dislocations. In addition, hydrogen storage behaviors, thermal properties and corrosion resistance of composites are also briefly introduced. In the end, this review summarizes the limitations of magnesium matrix composites at present stage as well as the prospect of its future development.

Key words:  magnesium matrix composite      carbonaceous nanomaterial      preparation method      strengthening and toughening mechanism     
Received:  09 July 2018     
ZTFLH:  TG146  
Fund: Supported by National Natural Science Foundation of China (Nos.51671066 and 51471059)

Cite this article: 

Xiaojun WANG, Yeyang XIANG, Xiaoshi HU, Kun WU. Recent Progress on Magnesium Matrix Composites Reinforced by Carbonaceous Nanomaterials. Acta Metall Sin, 2019, 55(1): 73-86.

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00316     OR     https://www.ams.org.cn/EN/Y2019/V55/I1/73

Fig.1  Schematic illustration of powder metallurgy method (CNTs—carbon nanotubes, GNPs—graphene nanoplatelets, F—pressure)
Fig.2  Fabrication produce of the magnesium matrix composites reinforced by GNPs by stirring casting (The inset SEM image shows the surface of Mg@PVA chip with absorbed GNPs. SDS—sodium dodecyl sulphate, PVA—polyvinyl alcohol)[26]
Fig.3  Schematic illustration of disintegrated melt deposition
Fig.4  Schematic illustration of friction stir processing (FSP)
Fig.5  Microstructures of squeezed CNTs/Mg-6Zn[30](a) TEM image of a typical CNT in composite(b) the interface between CNT tip and Mg(c) the interface between two CNTs and Mg
Fig.6  Schematic illustration of the interface between CNTs, MgO and Mg
Fig.7  TEM micrograph of the embedded GNPs in the composite after solution heat treatment (a), the enlarged HAADF TEM image of Fig.7a (b) and the schematic representation of the nucleation of the precipitates near the GNPs in a Mg crystal unit (c)[57]
Fig.8  The variation in Young's modulus (Ec) as a function of volume fraction of GNPs (VG) for different micromechanical models[26]
Fig.9  Comparison of the yield strength of composites (σyc) between calculation and experiment values (a), yield strength increment (Δσyc) according to different strengthening mechanisms, the grain size strengthening is divided into the effect of coarse and equiaxed grains (CEG) and ultrafine grains (UFG), respectively (b) and relationship between load transfer and Orowan strengthening effect for the yield strength of the composites with the increasing size of GNPs (dG) (c)[26]
Fig.10  SEM-EBSD surface slip trace analysis and corresponding inverse pole figures (IPFs) as well as pole figures (PFs) on Mg (a), 0.10%GNPs-Mg composite (b) and 0.25%GNPs-Mg composite (c) after the strain of 6% (Yellow lines show basal slip traces; blue lines show prismatic slip traces and red lines show second order pyramidal slip traces. The numbers in the parentheses are the deviations between the slip traces and the plane traces. ED—extrusion direction)[39]
[1] Li W X.Magnesium and Magnesium Alloys [M]. Changsha: Central South University Press, 2005: 1(黎文献. 镁及镁合金 [M]. 长沙: 中南大学出版社, 2005: 1)
[2] Mordike B L, Ebert T.Magnesium: Properties—applications—potential[J]. Mater. Sci. Eng., 2001, A302: 37
[3] Deng K K.Effects of forging processing on microstructures and properties of SiCp/AZ91 magnesium matrix composites [D]. Harbin: Harbin Institute of Technology, 2008(邓坤坤. 锻造工艺对SiCp/AZ91镁基复合材料组织与性能的影响 [D]. 哈尔滨: 哈尔滨工业大学, 2008)
[4] Wang X J.Study on hot deformation behavior of SiC particulate reinforced magnesium matrix composites fabricated by stir casting [D]. Harbin: Harbin Institute of Technology, 2008(王晓军. 搅拌铸造SiC颗粒增强镁基复合材料高温变形行为研究 [D]. 哈尔滨: 哈尔滨工业大学, 2008)
[5] Wang L Y.Microstructure and properties of SiC particulate reinforced magnesium matrix composites processed by ultrasonic based stir casting [D]. Harbin: Harbin Institute of Technology, 2012(王丽艳. 超声波辅助搅拌铸造SiCp增强镁基复合材料的组织与性能 [D]. 哈尔滨: 哈尔滨工业大学, 2012)
[6] Ding C.Research on microstructure and mechanical properties on diamond/AZ91D magnesium matrix composite [D]. Harbin: Harbin Institute of Technology, 2013(丁超. 金刚石颗粒增强AZ91镁基复合材料组织与性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2013)
[7] Nie K B.Effect of multi-directional forging on microstructure and mechanical properties of SiCp/AZ91 magnesium matrix composites [D]. Harbin: Harbin Institute of Technology, 2012(聂凯波. 多向锻造变形纳米SiCp/AZ91镁基复合材料组织与力学性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2012)
[8] Iijima S.Helical microtubules of graphitic carbon[J]. Nature, 1991, 354: 56
[9] Yakobson B I, Brabec C J, Bernholc J.Nanomechanics of carbon tubes: Instabilities beyond linear response[J]. Phys. Rev. Lett., 1996, 76: 2511
[10] Anglaret E, Rols S, Sauvajol J L.Comment on "effect of the growth temperature on the diameter distribution and chirality of single-wall carbon nanotubes"[J]. Phys. Rev. Lett., 1998, 81: 4780
[11] Salvetat J P, Briggs G A D, Bonard J M, et al. Elastic and shear moduli of single-walled carbon nanotube ropes[J]. Phys. Rev. Lett., 1999, 82: 944
[12] Zhu Y W, Murali S, Stoller M D, et al.Carbon-based supercapacitors produced by activation of grapheme[J]. Science, 2011, 332: 1537
[13] Choi W, Lahiri I, Seelaboyina R, et al.Synthesis of graphene and its applications: A review[J]. Crit. Rev. Solid State Mater. Sci., 2010, 35: 52
[14] Soldano C, Mahmood A, Dujardin E.Production, properties and potential of graphene[J]. Carbon, 2010, 48: 2127
[15] Rashad M, Pan F S, Asif M, et al.Improved mechanical properties of magnesium-graphene composites with copper-graphene hybrids[J]. Mater. Sci. Technol., 2015, 31: 1452
[16] Rashad M, Pan F S, Asif M, et al.Powder metallurgy of Mg-1%Al-1%Sn alloy reinforced with low content of graphene nanoplatelets (GNPs)[J]. J. Ind. Eng. Chem., 2014, 20: 4250
[17] Rashad M, Pan F S, Tang A T, et al.Synergetic effect of graphene nanoplatelets (GNPs) and multi-walled carbon nanotube (MW-CNTs) on mechanical properties of pure magnesium[J]. J. Alloys Compd., 2014, 603: 111
[18] Rashad M, Pan F S, Hu H H, et al.Enhanced tensile properties of magnesium composites reinforced with graphene nanoplatelets[J]. Mater. Sci. Eng., 2015, A630: 36
[19] Rashad M, Pan F S, Tang A T, et al.Improved strength and ductility of magnesium with addition of aluminum and graphene nanoplatelets (Al+GNPs) using semi powder metallurgy method[J]. J. Ind. Eng. Chem., 2015, 23: 243
[20] Rashad M, Pan F S, Zhang J Y, et al.Use of high energy ball milling to study the role of graphene nanoplatelets and carbon nanotubes reinforced magnesium alloy[J]. J. Alloys Compd., 2015, 646: 223
[21] Rashad M, Pan F S, Asif M.Exploring mechanical behavior of Mg-6Zn alloy reinforced with graphene nanoplatelets[J]. Mater. Sci. Eng., 2016, A649: 263
[22] Rashad M, Pan F S, Lin D, et al.High temperature mechanical behavior of AZ61 magnesium alloy reinforced with graphene nanoplatelets[J]. Mater. Des., 2016, 89: 1242
[23] Kondoh K, Fukuda H, Umeda J, et al.Microstructural and mechanical analysis of carbon nanotube reinforced magnesium alloy powder composites[J]. Mater. Sci. Eng., 2010, A527: 4103
[24] Shimizu Y, Miki S, Soga T, et al.Multi-walled carbon nanotube-reinforced magnesium alloy composites[J]. Scr. Mater., 2008, 58: 267
[25] Shen J L, Li S N, Yu T Q, et al.Study on the mechanical properties and strengthening mechanism of magnesium matrix composite by powder metallurgy[J]. Foundry Technol., 2005, 26: 309(沈金龙, 李四年, 余天庆等. 粉末冶金法制备镁基复合材料的力学性能和增强机理研究[J]. 铸造技术, 2005, 26: 309)
[26] Xiang S L, Wang X J, Gupta M, et al.Graphene nanoplatelets induced heterogeneous bimodal structural magnesium matrix composites with enhanced mechanical properties[J]. Sci. Rep., 2016, 6: 38824
[27] Wang M, Zhao Y, Wang L D, et al.Achieving high strength and ductility in graphene/magnesium composite via an in-situ reaction wetting process[J]. Carbon, 2018, 139: 954
[28] Li C D, Wang X J, Wu K, et al.Distribution and integrity of carbon nanotubes in carbon nanotube/magnesium composites[J]. J. Alloys Compd., 2014, 612: 330
[29] Li C D, Wang X J, Liu W Q, et al.Effect of solidification on microstructures and mechanical properties of carbon nanotubes reinforced magnesium matrix composite[J]. Mater. Des., 2014, 58: 204
[30] Li C D, Wang X J, Liu W Q, et al.Microstructure and strengthening mechanism of carbon nanotubes reinforced magnesium matrix composite[J]. Mater. Sci. Eng., 2014, A597: 264
[31] Li C D.Microstructure and properties of CNTs/Mg-6Zn magnesium matrix composites fabricated by the stirring casting assisted with ultrasonic vibration [D]. Harbin: Harbin Institute of Technology, 2014(李成栋. 超声辅助搅拌铸造制备CNTs/Mg-6Zn镁基复合材料及其组织性能 [D]. 哈尔滨: 哈尔滨工业大学, 2014)
[32] Shi H L, Wang X J, Li C D, et al.A novel method to fabricate CNT/Mg-6Zn composites with high strengthening efficiency[J]. Acta Metall. Sin.(Engl. Lett.), 2014, 27: 909
[33] Shi H L.Study on fabrication, interface of MWCNT/Mg-6Zn magnesium matrix composites [D]. Harbin: Harbin Institute of Technology, 2015(施海龙. 多壁碳纳米管增强镁基复合材料制备及界面研究 [D]. 哈尔滨: 哈尔滨工业大学, 2015)
[34] Du X, Du W B, Wang Z H, et al.Ultra-high strengthening efficiency of graphene nanoplatelets reinforced magnesium matrix composites[J]. Mater. Sci. Eng., 2018, A711: 633
[35] Gupta M, Lai M O, Soo C Y.Effect of type of processing on the microstructural features and mechanical properties of Al-Cu/SiC metal matrix composites[J]. Mater. Sci. Eng., 1996, A210: 114
[36] Gupta M, Wong W L E. Magnesium-based nanocomposites: Lightweight materials of the future[J]. Mater. Charact., 2015, 105: 30
[37] Zhao Y T, Dai Q X, Chen G.Metal Matrix Composite [M]. Beijing: China Machine Press, 2007: 72(赵玉涛, 戴起勋, 陈刚. 金属基复合材料 [M]. 北京: 机械工业出版社, 2007: 72)
[38] Goh C S, Wei J, Lee L C, et al.Simultaneous enhancement in strength and ductility by reinforcing magnesium with carbon nanotubes[J]. Mater. Sci. Eng., 2006, A423: 153
[39] Xiang S L, Gupta M, Wang X J, et al.Enhanced overall strength and ductility of magnesium matrix composites by low content of graphene nanoplatelets[J]. Composites, 2017, 100A: 183
[40] Chen L Y, Konishi H, Fehrenbacher A, et al.Novel nanoprocessing route for bulk graphene nanoplatelets reinforced metal matrix nanocomposites[J]. Scr. Mater., 2012, 67: 29
[41] Jian X G, Ke L M, Liu F C, et al.Microstructure and mechanical properties of MWCNTs/AZ80 composite fabricated by friction stir processing[J]. J. Nanchang Hangkong Univ.: Nat. Sci., 2013, 27(1): 8(简晓光, 柯黎明, 刘奋成等. 搅拌摩擦加工制备MWCNTs/AZ80复合材料的组织和力学性能[J]. 南昌航空大学学报: 自然科学版, 2013, 27(1): 8)
[42] Lu D H, Jiang Y H, Zhou R.Wear performance of nano-Al2O3 particles and CNTs reinforced magnesium matrix composites by friction stir processing[J]. Wear, 2013, 305: 286
[43] Li S N, Shen J L, Yu T Q, et al.Effect of different plating carbon nanoubes on mechanical properties of magnesium matrix composite[J]. Foundry Technol., 2004, 25: 590(李四年, 沈金龙, 余天庆等. 不同涂层碳纳米管对增强镁基复合材料力学性能的影响[J]. 铸造技术, 2004, 25: 590)
[44] Wang Y.Technical study on the CNTs reinforced magnesium matrix composite by powder metallurgy [D]. Shenyang: Northeastern University, 2012(王誉. 粉末冶金法制备碳纳米管增强镁基复合材料工艺研究 [D]. 沈阳: 东北大学, 2012)
[45] Nai M H, Wei J, Gupta M.Interface tailoring to enhance mechanical properties of carbon nanotube reinforced magnesium composites[J]. Mater. Des., 2014, 60: 490
[46] Zhou X, Song S, Li L, et al.Molecular dynamics simulation for mechanical properties of magnesium matrix composites reinforced with nickel-coated single-walled carbon nanotubes[J]. J. Compos. Mater., 2015, 50: 191
[47] Han G Q, Du W B, Ye X X, et al.Compelling mechanical properties of carbon nanotubes reinforced pure magnesium composite by effective interface bonding of Mg2Ni[J]. J. Alloys Compd., 2017, 727: 963
[48] Wu Q, Jia C C, Nie J H.The mechanical and electrical properties of magnesium matrix composites reinforced by tungsten-coated carbon nanotubes[J]. Powder Metall. Technol., 2012, 30: 171(吴琼, 贾成厂, 聂俊辉. 镀W碳纳米管增强Mg基复合材料的力学和电学性能[J]. 粉末冶金技术, 2012, 30: 171)
[49] Jagannatham M, Sankaran S, Haridoss P.Microstructure and mechanical behavior of copper coated multiwall carbon nanotubes reinforced aluminum composites[J]. Mater. Sci. Eng., 2015, A638: 197
[50] Maqbool A, Hussain M A, Khalid F A, et al.Mechanical characterization of copper coated carbon nanotubes reinforced aluminum matrix composites[J]. Mater. Charact., 2013, 86: 39
[51] Hu W, Zhang Z H, Hu Z Y, et al.Synergistic strengthening effect of nanocrystalline copper reinforced with carbon nanotubes[J]. Sci. Rep., 2016, 6: 26258
[52] Yuan Q H, Zeng X S, Liu Y, et al.Microstructure and mechanical properties of AZ91 alloy reinforced by carbon nanotubes coated with MgO[J]. Carbon, 2016, 96: 843
[53] Yuan Q H, Zhou G H, Liao L, et al.Interfacial structure in AZ91 alloy composites reinforced by graphene nanosheets[J]. Carbon, 2018, 127: 177
[54] Yuan Q H, Qiu Z Q, Zhou G H, et al.Interfacial design and strengthening mechanisms of AZ91 alloy reinforced with in-situ reduced graphene oxide[J]. Mater. Charact., 2018, 138: 215
[55] Fukuda H, Kondoh K, Umeda J, et al.Interfacial analysis between Mg matrix and carbon nanotubes in Mg-6 wt.% Al alloy matrix composites reinforced with carbon nanotubes[J]. Compos. Sci. Technol., 2011, 71: 705
[56] Chen B, Shen J, Ye X, et al.Solid-state interfacial reaction and load transfer efficiency in carbon nanotubes (CNTs)-reinforced aluminum matrix composites[J]. Carbon, 2017, 114: 198
[57] Xiang S L, Hu X S, Wang X J, et al.Precipitate characteristics and synergistic strengthening realization of graphene nanoplatelets reinforced bimodal structural magnesium matrix composites[J]. Mater. Sci. Eng., 2018, A724: 348
[58] Sanaty-Zadeh A.Comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of Hall-Petch effect[J]. Mater. Sci. Eng., 2012, A531: 112
[59] Li Y, Zhao Y H, Ortalan V, et al.Investigation of aluminum-based nanocomposites with ultra-high strength[J]. Mater. Sci. Eng., 2009, A527: 305
[60] Ye H Z, Liu X Y.Review of recent studies in magnesium matrix composites[J]. J. Mater. Sci., 2004, 39: 6153
[61] Nardone V C, Prewo K M.On the strength of discontinuous silicon carbide reinforced aluminum composites[J]. Scr. Mater., 1986, 20: 43
[62] Mao W M, Zhu J C, Li J, et al.The Structure and Properties of Metallic Materials [M]. Beijing: Tsinghua University Press, 2008(毛卫民, 朱景川, 郦剑等. 金属材料结构与性能 [M]. 北京: 清华大学出版社, 2008)
[63] Liu Q.Research progress on plastic deformation mechanism of Mg alloys[J]. Acta Metall. Sin., 2010, 46: 1458(刘庆. 镁合金塑性变形机理研究进展[J]. 金属学报, 2010, 46: 1458)
[64] Qi Y P.Study on Mg based amorphous preparation and the toughening of carbon nanotube composites [D]. Tianjing: Hebei University of Technology, 2011(齐云鹏. 镁基块体非晶的制备及其碳纳米管复合材料的增韧研究 [D]. 天津: 河北工业大学, 2011)
[65] Choi W, Termin A, Hoffmann M R.The role of metal ion dopants in quantum-sized TiO2: Correlation between photoreactivity and charge carrier recombination dynamics[J]. J. Phys. Chem., 1994, 98: 13669
[66] Li W X, Hu S M, Hao Y, et al.Hydrogen storage property of Mg-Ni-TiO2-CNTs composites[J]. Int. J. Mod. Phys., 2009, 23B: 1358
[67] Cheng H M, Li F, Su G, et al.Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons[J]. Appl. Phys. Lett., 1998, 72: 3282
[68] Li W X.Study on fabrication and physical properties of CNTs/magnesium matrix composites [D]. Lanzhou: Lanzhou University of Technology, 2009(李维学. 碳纳米管/镁基复合材料的制备与物性研究 [D]. 兰州: 兰州理工大学, 2009)
[69] Zhou G H.The research of MWCNTs/AZ31 magnesium matrix composites and equal channel angular pressing [D]. Nanchang: Nanchang University, 2010(周国华. 碳纳米管/AZ31镁基复合材料的制备与等径角挤压研究 [D]. 南昌: 南昌大学, 2010)
[70] Wu J C, Zeng X S, Zhou G H, et al.Study on corrosion resistance of CNTs/Magnesium composite in NaCl solution[J]. Hot Working Technol., 2011, 40: 96(吴集才, 曾效舒, 周国华等. 碳纳米管/镁基复合材料在NaCl溶液中的抗腐蚀性能研究[J]. 热加工工艺, 2011, 40: 96)
[71] Song G L, Atrens A, Wu X L, et al.Corrosion behaviour of AZ21, AZ501 and AZ91 in sodium chloride[J]. Corros. Sci., 1998, 10: 1769
[72] Wang X J, Xu D K, Wu R Z, et al.What is going on in magnesium alloys?[J]. J. Mater. Sci. Technol., 2017, 34: 245
[73] Wegst U G K, Ashby M F. The mechanical efficiency of natural materials[J]. Philos. Mag., 2004, 84: 2167
[74] Zhang Y Y, Li X D.Bioinspired, graphene/Al2O3 doubly reinforced aluminum composites with high strength and toughness[J]. Nano Lett., 2017, 17: 6907
[75] Zhao M, Xiong D B, Tan Z Q, et al.Lateral size effect of graphene on mechanical properties of aluminum matrix nanolaminated composites[J]. Scr. Mater., 2017, 139: 44
[76] Yoo S J, Han S H, Kim W J.A combination of ball milling and high-ratio differential speed rolling for synthesizing carbon nanotube/copper composites[J]. Carbon, 2013, 61: 487
[77] Cao M, Xiong D B, Tan Z Q, et al.Aligning graphene in bulk copper: Nacre-inspired nanolaminated architecture coupled with in-situ processing for enhanced mechanical properties and high electrical conductivity[J]. Carbon, 2017, 117: 65
[78] Xiong D B, Cao M, Guo Q, et al.Graphene-and-copper artificial nacre fabricated by a preform impregnation process: Bioinspired strategy for strengthening-toughening of metal matrix composite[J]. ACS Nano, 2015, 9: 6934
[79] Xiong D B, Cao M, Guo Q, et al.High content reduced graphene oxide reinforced copper with a bioinspired nano-laminated structure and large recoverable deformation ability[J]. Sci. Rep., 2016, 6: 33801
[80] Zhang L, Chen Z, Wang Y H, et al.Fabricating interstitial-free steel with simultaneous high strength and good ductility with homogeneous layer and lamella structure[J]. Scr. Mater., 2017, 141: 111
[81] Wu H, Fan G H, Huang M, et al.Deformation behavior of brittle/ductile multilayered composites under interface constraint effect[J]. Int. J. Plast., 2017, 89: 96
[82] Wu H, Fan G H, Jin B C, et al.Fabrication and mechanical properties of TiBw/Ti-Ti(Al) laminated composites[J]. Mater. Des., 2016, 89: 697
[83] Wu H, Fan G H, Huang M, et al.Fracture behavior and strain evolution of laminated composites[J]. Compos. Struct., 2017, 163: 123
[84] Fan G H, Geng L, Wu H, et al.Improving the tensile ductility of metal matrix composites by laminated structure: A coupled X-ray tomography and digital image correlation study[J]. Scr. Mater., 2017, 135: 63
[85] Zhao H W, Yue Y H, Guo L, et al.Cloning nacre's 3D interlocking skeleton in engineering composites to achieve exceptional mechanical properties[J]. Adv. Mater., 2016, 28: 5099
[86] Deville S, Saiz E, Nalla R K, et al.Freezing as a path to build complex composites[J]. Science, 2006, 311: 515
[87] Meng L L, Wang X J, Ning J L, et al.Beyond the dimensional limitation in bio-inspired composite: Insertion of carbon nanotubes induced laminated Cu composite and the simultaneously enhanced strength and toughness[J]. Carbon, 2018, 130: 222
[88] Ding S J, Zhao Y Z, Ge D B.Research progress in electromagnetic shielding materials[J]. Mater. Rev., 2008, 22(4): 30(丁世敬, 赵跃智, 葛德彪. 电磁屏蔽材料研究进展[J]. 材料导报, 2008, 22(4): 30)
[89] Wang J Z, Xi Z P, Tang H P, et al.Research progress of electromagnetic shielding material of metal fiber[J]. Rare Met. Mater. Eng., 2011, 40: 1688(王建忠, 奚正平, 汤慧萍等. 金属纤维电磁屏蔽材料的研究进展[J]. 稀有金属材料与工程, 2011, 40: 1688)
[90] Chen X H, Liu J, Zhang Z H, et al.Effect of heat treatment on electromagnetic shielding effectiveness of ZK60 magnesium alloy[J]. Mater. Des., 2012, 42: 327
[91] Roh J S, Chi Y S, Kang T J, et al.Electromagnetic shielding effectiveness of multifunctional metal composite fabrics[J]. Text Res. J., 2008, 78: 825
[92] Wen B, Cao M S, Lu M M, et al.Reduced graphene oxides: Light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures[J]. Adv. Mater., 2014, 26: 3484
[93] Liu Z F, Bai G, Huang Y, et al.Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites[J]. Carbon, 2007, 45: 821
[94] Ji K J, Zhao H H, Huang Z G, et al.Performance of open-cell foam of Cu-Ni alloy integrated with graphene as a shield against electromagnetic interference[J]. Mater. Lett., 2014, 122: 244
[95] Yan D X, Pang H, Li B, et al.Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding[J]. Adv. Funct. Mater., 2015, 25: 559
[96] Al-Saleh M H, Sundararaj U. Electromagnetic interference shielding mechanisms of CNT/polymer composites[J]. Carbon, 2009, 47: 1738
[97] Zhang Z H, Pan F S, Chen X H, et al.Electromagnetic shielding properties of magnesium and magnesium alloys[J]. J. Mater. Eng., 2013, (1): 52(张志华, 潘复生, 陈先华等. 镁及其合金的电磁屏蔽性能研究[J]. 材料工程, 2013, (1): 52)
[98] Song K.Study on electromagnetic shielding properties of magnesium alloys [D]. Chongqing: Chongqing University, 2015(宋锴. 镁合金电磁屏蔽性能的研究 [D]. 重庆: 重庆大学, 2015)
[1] LIU Zhenbao,LIANG Jianxiong,SU Jie,WANG Xiaohui,SUN Yongqing,WANG Changjun,YANG Zhiyong. Research and Application Progress in Ultra-HighStrength Stainless Steel[J]. 金属学报, 2020, 56(4): 549-557.
[2] ZHOU Xia,LIU Xiaoxia. Mechanical Properties and Strengthening Mechanism of Graphene Nanoplatelets Reinforced Magnesium Matrix Composites[J]. 金属学报, 2020, 56(2): 240-248.
[3] Ting ZHANG,Yuhong ZHAO,Liwen CHEN,Jianquan LIANG,Muxi LI,Hua HOU. Graphene Nanoplatelets Reinforced Magnesium Matrix Composites Fabricated by Thixomolding[J]. 金属学报, 2019, 55(5): 638-646.
[4] QIN Jiayu, LI Xiaoqiang, JIN Peipeng, WANG Jinhui, ZHU Yunpeng. Microstructure and Mechanical Properties of Carbon Nanotubes (CNTs) Reinforced AZ91 Matrix Composite[J]. 金属学报, 2019, 55(12): 1537-1543.
[5] Yantao YAO, Liqing CHEN, Wenguang WANG. Damping Capacities of (B4C+Ti) Hybrid Reinforced Mg and AZ91D Composites Processed by In Situ Reactive Infiltration Technique[J]. 金属学报, 2019, 55(1): 141-148.
[6] Naiqin ZHAO, Xinghai LIU, Bowen PU. Progress on Multi-Dimensional Carbon Nanomaterials Reinforced Aluminum Matrix Composites: A Review[J]. 金属学报, 2019, 55(1): 1-15.
[7] Erlin ZHANG, Xiaoyan WANG, Yong HAN. Research Status of Biomedical Porous Ti and Its Alloy in China[J]. 金属学报, 2017, 53(12): 1555-1567.
[8] Haoran ZHENG, Minfang CHEN, Zhen LI, Chen YOU, Debao LIU. Effects of MgO Modified HA Nanoparticles on the Microstructure and Properties of Mg-Zn-Zr/m-HA Composites[J]. 金属学报, 2017, 53(10): 1364-1376.
[9] ZHU Qingzhen XUE Wenbin LU Liang DU Jiancheng LIU Guanjun LI Wenfang. PREPARATION OF MICROARC OXIDATION COATING ON (Al2O3-SiO2)sf/AZ91D MAGNESIUM MATRIX COMPOSITE AND ITS ELECTROCHEMICAL IMPEDANCE SPECTROSCOPIC ANALYSIS\par[J]. 金属学报, 2011, 47(1): 74-80.
[10] CHEN Liqing; DONG Qun; GUO Jinhua; BI Jing; XU Yongbo. Compressive deformation behavior of TiC/AZ91Dcomposites at elevated temperatures[J]. 金属学报, 2005, 41(3): 326-332 .
[11] LI Xiaojun; CHAI Donglang; XI Yulin. Analog Simulation of Local Stress Field in SiCp Reinforced Magnesium Matrix Composites[J]. 金属学报, 2004, 40(9): 927-929 .
No Suggested Reading articles found!