|
|
PREPARATION AND MECHANICAL PROPERTIES OF Zr46.9Cu45.5Al5.6Y2.0 IN SITU BMG COMPOSITES WITH B2-CuZr PHASE |
Yong SHEN( ),Jian XU |
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 |
|
Cite this article:
Yong SHEN,Jian XU. PREPARATION AND MECHANICAL PROPERTIES OF Zr46.9Cu45.5Al5.6Y2.0 IN SITU BMG COMPOSITES WITH B2-CuZr PHASE. Acta Metall Sin, 2015, 51(11): 1407-1415.
|
Abstract Bulk metallic glass (BMG) composites containing B2-CuZr phase are of interest due to they behave large plastic strain and apparent work hardening in tension. Nevertheless till now most BMG composites containing B2-CuZr phase are based on Cu47.5Zr47.5Al5 or Zr48Cu47.5Al4Co0.5 BMG, which has limited glass forming ability (GFA). The prepared sample size is small, which restricts their potential engineering structural applications. In this work, Zr-Cu-Al-Y quaternary system is selected due to its high GFA. By tuning composition close to CuZr alloy in Zr-Cu-Al-Y quaternary system, Zr46.9Cu45.5Al5.6Y2.0 BMG is selected because it has proper GFA (critical diameter Dc=5 mm) and relatively large fracture toughness (KQ=(49±3) MPam1/2). By decreasing the cooling rates of the melt via increasing diameter of casting rods, large-sized in situ Zr46.9Cu45.5Al5.6Y2.0 BMG composites containing 13% and 25% volume fractions spherical B2-CuZr phase were prepared in the casting rods with 6 and 7 mm in diameters, respectively. In compression testing, the in situ BMG composites containing 25%B2-CuZr phase promote multiple shear bands within glass matrix and remarkable global plastic deformation, accompanied by a large compressive plastic strain as 6.5%. Nevertheless in tension testing no obvious global ductility was achieved, which attributes to the low mode I fracture toughness and small plastic zone size (RP=88 mm, RP=(1/3π)(KQ/sy)2 ) of glass matrix. Three point bending test results show that Y has an adverse effect on the fracture toughness and plastic zone size of Zr-Cu-Al BMGs. In contrast to Zr46.9Cu45.5Al5.6Y2.0 BMG, fatigue pre-cracked Zr48Cu45Al7 BMG plate samples can be prepared and exhibit a high fracture toughness (KQ=(62±3) MPam1/2) and a large plastic zone size (RP=150 mm) in plane strain state. Our results show that GFA and fracture toughness of glass matrix should be balanced when designing new BMG composites containing B2-CuZr phase.
|
|
Fund: Supported by National Natural Science Foundation of China (No.51171180) |
[1] | Johnson W L. MRS Bull, 1999; 24: 42 | [2] | Ashby M F, Greer A L. Scr Mater, 2006; 54: 321 | [3] | Greer A L, Ma E. MRS Bull, 2007; 32: 611 | [4] | Argon A S. Acta Mater, 1979; 27: 47 | [5] | Schuh C A, Hufnagel T C, Ramamurty U. Acta Mater, 2007; 55: 4067 | [6] | Li Y, Poon S J, Shiflet G J, Xu J, Kim D H, L?ffler J F. MRS Bull, 2007; 32: 624 | [7] | Hays C C, Kim C P, Johnson W L. Phys Rev Lett, 2000; 84: 2901 | [8] | Szuecs F, Kim C P, Johnson W L. Acta Mater, 2001; 49: 1507 | [9] | Hofmann D C, Suh J Y, Wiest A, Duan G, Lind M L, Demetriou M D, Johnson W L. Nature, 2008; 451: 1085 | [10] | Hofmann D C, Suh J Y, Wiest A, Lind M L, Demetriou M D, Johnson W L. Proc Nat Acad Sci USA, 2008; 105: 20136 | [11] | Sun Y F, Wei B C, Wang Y R, Li W H, Cheung T L, Shek C H. Appl Phys Lett, 2005; 87: 051905 | [12] | Pauly S, Liu G, Wang G, Kuhn U, Mattern N, Eckert J. Acta Mater, 2009; 57: 5445 | [13] | Wu Y, Xiao Y H, Chen G L, Liu C T, Lu Z P. Adv Mater, 2010; 22: 2770 | [14] | Hofmann D C. Science, 2010; 329: 1294 | [15] | Wu Y, Wang H, Wu H H, Zhang Z Y, Hui X D, Chen G L, Ma D, Wang X L, Lu Z P. Acta Mater, 2011; 59: 2928 | [16] | Russell A M. Adv Eng Mater, 2003; 5: 629 | [17] | Gschneidner K, Russell A, Pecharsky A, Morris J, Zhang Z, Lograsso T, Hsu D, Lo C H C, Ye Y, Slager A, Kesse D. Nat Mater, 2003; 2: 587 | [18] | Wollmershauser J A, Kabra S, Agnew S R. Acta Mater, 2009; 57: 213 | [19] | Wang S G, Xu J. J Non-Cryst Solids, 2013; 379: 40 | [20] | Carvalho E M, Harris I R. J Mater Sci, 1980; 15: 1224 | [21] | Wu Y, Zhou D Q, Song W L, Wang H, Zhang Z Y, Ma D, Wang X L, Lu Z P. Phys Rev Lett, 2012; 109: 245506 | [22] | Wu Y, Wang H, Liu X J, Chen X H, Hui X D, Zhang Y, Lu Z P. J Mater Sci Technol, 2014; 30: 566 | [23] | Wu F F, Chan K C, Li S T, Wang G. J Mater Sci, 2014; 49: 2164 | [24] | Liu Z Q, Liu G, Qu R T, Zhang Z F, Wu S J, Zhang T. Sci Rep, 2014; 4: 4167 | [25] | Xu D H, Duan G, Johnson W L. Phys Rev Lett, 2004; 92: 245504 | [26] | Shen Y, Ma E, Xu J. J Mater Sci Technol, 2008; 24: 149 | [27] | Shen Y, Xu J. J Mater Res, 2010; 25: 375 | [28] | Johnson W L, Samwer K. Phys Rev Lett, 2005; 95: 195501 | [29] | Gao H L, Shen Y, Xu J. J Mater Res, 2011; 26: 2087 | [30] | He Q, Xu J. J Mater Sci Technol, 2012; 28: 1109 | [31] | He Q, Cheng Y Q, Ma E, Xu J. Acta Mater, 2011; 59: 202 | [32] | Yao J H, Wang J Q, Lu L, Li Y. Appl Phys Lett, 2008; 92: 041905 | [33] | Koval Y N, Firstov G S, Delaey L, Humbeeck J V. Scr Metall, 1994; 31: 799 | [34] | Park E S, Kim D H. Acta Mater, 2006; 54: 2597 | [35] | Chen S S, Zhang H R, Todd I. Scr Mater, 2014; 72-73: 47 | [36] | Park E S, Kyeong J S, Kim D H. Scr Mater, 2007; 57: 49 | [37] | Flores K M, Dauskardt R H. J Mech Phys Solids, 2006; 54: 2418 | [38] | Madge S V, Louzguine-Luzgin D V, Lewandowsi J J, Greer A L. Acta Mater, 2012; 60: 4800 | [39] | Tandaiya P, Ramamurty U, Narasimhan R. J Mech Phys Solids, 2009; 57: 1880 | [40] | He Q, Shang J K, Ma E, Xu J. Acta Mater, 2012; 60: 4940 |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|