Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (11): 1407-1415    DOI: 10.11900/0412.1961.2015.00140
Current Issue | Archive | Adv Search |
PREPARATION AND MECHANICAL PROPERTIES OF Zr46.9Cu45.5Al5.6Y2.0 IN SITU BMG COMPOSITES WITH B2-CuZr PHASE
Yong SHEN(),Jian XU
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

Yong SHEN,Jian XU. PREPARATION AND MECHANICAL PROPERTIES OF Zr46.9Cu45.5Al5.6Y2.0 IN SITU BMG COMPOSITES WITH B2-CuZr PHASE. Acta Metall Sin, 2015, 51(11): 1407-1415.

Download:  HTML  PDF(1069KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Bulk metallic glass (BMG) composites containing B2-CuZr phase are of interest due to they behave large plastic strain and apparent work hardening in tension. Nevertheless till now most BMG composites containing B2-CuZr phase are based on Cu47.5Zr47.5Al5 or Zr48Cu47.5Al4Co0.5 BMG, which has limited glass forming ability (GFA). The prepared sample size is small, which restricts their potential engineering structural applications. In this work, Zr-Cu-Al-Y quaternary system is selected due to its high GFA. By tuning composition close to CuZr alloy in Zr-Cu-Al-Y quaternary system, Zr46.9Cu45.5Al5.6Y2.0 BMG is selected because it has proper GFA (critical diameter Dc=5 mm) and relatively large fracture toughness (KQ=(49±3) MPam1/2). By decreasing the cooling rates of the melt via increasing diameter of casting rods, large-sized in situ Zr46.9Cu45.5Al5.6Y2.0 BMG composites containing 13% and 25% volume fractions spherical B2-CuZr phase were prepared in the casting rods with 6 and 7 mm in diameters, respectively. In compression testing, the in situ BMG composites containing 25%B2-CuZr phase promote multiple shear bands within glass matrix and remarkable global plastic deformation, accompanied by a large compressive plastic strain as 6.5%. Nevertheless in tension testing no obvious global ductility was achieved, which attributes to the low mode I fracture toughness and small plastic zone size (RP=88 mm, RP=(1/3π)(KQ/sy)2 ) of glass matrix. Three point bending test results show that Y has an adverse effect on the fracture toughness and plastic zone size of Zr-Cu-Al BMGs. In contrast to Zr46.9Cu45.5Al5.6Y2.0 BMG, fatigue pre-cracked Zr48Cu45Al7 BMG plate samples can be prepared and exhibit a high fracture toughness (KQ=(62±3) MPam1/2) and a large plastic zone size (RP=150 mm) in plane strain state. Our results show that GFA and fracture toughness of glass matrix should be balanced when designing new BMG composites containing B2-CuZr phase.

Key words:  bulk metallic glass      composite      B2-CuZr      fracture toughness     
Fund: Supported by National Natural Science Foundation of China (No.51171180)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00140     OR     https://www.ams.org.cn/EN/Y2015/V51/I11/1407

Fig.1  Illustration of out strategy of designing Zr-Cu-Al-Y in situ bulk metallic glass (BMG) composites with B2-CuZr compound (Zr44.4Cu42Al10Y3.6 (Y1) alloy is marked as a star)[27]
Fig.2  Illustration of inner structure of as-cast rods with different diameters of (Cu0.5Zr0.5)xM100-x (M=Zr0.15Y0.225Al0.625, 84≤x≤94) series alloys (Y1—Zr44.4Cu42Al10Y3.6, YC—Zr46.9Cu45.5Al5.6Y2.0)
Fig.3  OM images of central portion of in situ YC BMG composites with 6 mm (a) and 7 mm (b) in diameters
Fig.4  XRD spectra of the inner portion of YC cast rods with 6, 7 and 8 mm in diameters
Fig.5  DSC curves of YC fully glassy rod with 5 mm in diameter and YC BMG composites rods with 6 and 7 mm in diameters (Tg—glass transition temperature)
Rod diameter mm Tg K ΔH J/g Vf %
5 680 56.4 0
6 682 49.0 ~13
7 681 42.5 ~25
Table 1  Tg, heat of crystallization ΔH and volume fractions Vf of B2-CuZr of casting rods with different diameters of Zr46.9Cu45.5Al5.6Y2.0 alloy
Fig.6  Compressive engineering stress-strain curves of monolithic Zr47.2Cu46Al5Y1.8 BMG[27] and the in situ YC BMG composites with 25%B2-CuZr phase
Fig.7  Tensile engineering stress-strain curves of YC BMG composites with 25%B2-CuZr phase (a) and tensile stress-strain curve of the specimen marked with an arrow in Fig.7a (b)
Fig.8  SEM images of fractured tension sample of YC BMG composites with 25%B2-CuZr phase

(a) side view of fractured sample

(b) high-magnification image of the block area in Fig.8a

(c) top view of fractured sample

(d~f) high-magnification images of the block areas marked with 1, 2 and 3 in Fig.8c, respectively.

Sample No. Thickness B mm Width W mm KQ MPam1/2 Pmax/PQ 2.5(KQ/sy)2
1 3.01 6.03 65.4 1.09 3.9
2 2.96 6.03 60.4 1.00 3.4
3 3.01 6.02 59.1 1.00 3.2
Table 2  Three-point bending test results of fatigue pre-carcked Zr48Cu45Al7 BMG samples
[1] Johnson W L. MRS Bull, 1999; 24: 42
[2] Ashby M F, Greer A L. Scr Mater, 2006; 54: 321
[3] Greer A L, Ma E. MRS Bull, 2007; 32: 611
[4] Argon A S. Acta Mater, 1979; 27: 47
[5] Schuh C A, Hufnagel T C, Ramamurty U. Acta Mater, 2007; 55: 4067
[6] Li Y, Poon S J, Shiflet G J, Xu J, Kim D H, L?ffler J F. MRS Bull, 2007; 32: 624
[7] Hays C C, Kim C P, Johnson W L. Phys Rev Lett, 2000; 84: 2901
[8] Szuecs F, Kim C P, Johnson W L. Acta Mater, 2001; 49: 1507
[9] Hofmann D C, Suh J Y, Wiest A, Duan G, Lind M L, Demetriou M D, Johnson W L. Nature, 2008; 451: 1085
[10] Hofmann D C, Suh J Y, Wiest A, Lind M L, Demetriou M D, Johnson W L. Proc Nat Acad Sci USA, 2008; 105: 20136
[11] Sun Y F, Wei B C, Wang Y R, Li W H, Cheung T L, Shek C H. Appl Phys Lett, 2005; 87: 051905
[12] Pauly S, Liu G, Wang G, Kuhn U, Mattern N, Eckert J. Acta Mater, 2009; 57: 5445
[13] Wu Y, Xiao Y H, Chen G L, Liu C T, Lu Z P. Adv Mater, 2010; 22: 2770
[14] Hofmann D C. Science, 2010; 329: 1294
[15] Wu Y, Wang H, Wu H H, Zhang Z Y, Hui X D, Chen G L, Ma D, Wang X L, Lu Z P. Acta Mater, 2011; 59: 2928
[16] Russell A M. Adv Eng Mater, 2003; 5: 629
[17] Gschneidner K, Russell A, Pecharsky A, Morris J, Zhang Z, Lograsso T, Hsu D, Lo C H C, Ye Y, Slager A, Kesse D. Nat Mater, 2003; 2: 587
[18] Wollmershauser J A, Kabra S, Agnew S R. Acta Mater, 2009; 57: 213
[19] Wang S G, Xu J. J Non-Cryst Solids, 2013; 379: 40
[20] Carvalho E M, Harris I R. J Mater Sci, 1980; 15: 1224
[21] Wu Y, Zhou D Q, Song W L, Wang H, Zhang Z Y, Ma D, Wang X L, Lu Z P. Phys Rev Lett, 2012; 109: 245506
[22] Wu Y, Wang H, Liu X J, Chen X H, Hui X D, Zhang Y, Lu Z P. J Mater Sci Technol, 2014; 30: 566
[23] Wu F F, Chan K C, Li S T, Wang G. J Mater Sci, 2014; 49: 2164
[24] Liu Z Q, Liu G, Qu R T, Zhang Z F, Wu S J, Zhang T. Sci Rep, 2014; 4: 4167
[25] Xu D H, Duan G, Johnson W L. Phys Rev Lett, 2004; 92: 245504
[26] Shen Y, Ma E, Xu J. J Mater Sci Technol, 2008; 24: 149
[27] Shen Y, Xu J. J Mater Res, 2010; 25: 375
[28] Johnson W L, Samwer K. Phys Rev Lett, 2005; 95: 195501
[29] Gao H L, Shen Y, Xu J. J Mater Res, 2011; 26: 2087
[30] He Q, Xu J. J Mater Sci Technol, 2012; 28: 1109
[31] He Q, Cheng Y Q, Ma E, Xu J. Acta Mater, 2011; 59: 202
[32] Yao J H, Wang J Q, Lu L, Li Y. Appl Phys Lett, 2008; 92: 041905
[33] Koval Y N, Firstov G S, Delaey L, Humbeeck J V. Scr Metall, 1994; 31: 799
[34] Park E S, Kim D H. Acta Mater, 2006; 54: 2597
[35] Chen S S, Zhang H R, Todd I. Scr Mater, 2014; 72-73: 47
[36] Park E S, Kyeong J S, Kim D H. Scr Mater, 2007; 57: 49
[37] Flores K M, Dauskardt R H. J Mech Phys Solids, 2006; 54: 2418
[38] Madge S V, Louzguine-Luzgin D V, Lewandowsi J J, Greer A L. Acta Mater, 2012; 60: 4800
[39] Tandaiya P, Ramamurty U, Narasimhan R. J Mech Phys Solids, 2009; 57: 1880
[40] He Q, Shang J K, Ma E, Xu J. Acta Mater, 2012; 60: 4940
[1] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[2] MA Zongyi, XIAO Bolv, ZHANG Junfan, ZHU Shize, WANG Dong. Overview of Research and Development for Aluminum Matrix Composites Driven by Aerospace Equipment Demand[J]. 金属学报, 2023, 59(4): 457-466.
[3] MA Guonan, ZHU Shize, WANG Dong, XIAO Bolv, MA Zongyi. Aging Behaviors and Mechanical Properties of SiC/Al-Zn-Mg-Cu Composites[J]. 金属学报, 2023, 59(12): 1655-1664.
[4] JIANG Jiang, HAO Shijie, JIANG Daqiang, GUO Fangmin, REN Yang, CUI Lishan. Quasi-Linear Superelasticity Deformation in an In Situ NiTi-Nb Composite[J]. 金属学报, 2023, 59(11): 1419-1427.
[5] SHEN Yingying, ZHANG Guoxing, JIA Qing, WANG Yumin, CUI Yuyou, YANG Rui. Interfacial Reaction and Thermal Stability of the SiCf/TiAl Composites[J]. 金属学报, 2022, 58(9): 1150-1158.
[6] GU Ruicheng, ZHANG Jian, ZHANG Mingyang, LIU Yanyan, WANG Shaogang, JIAO Da, LIU Zengqian, ZHANG Zhefeng. Fabrication of Mg-Based Composites Reinforced by SiC Whisker Scaffolds with Three-Dimensional Interpenetrating-Phase Architecture and Their Mechanical Properties[J]. 金属学报, 2022, 58(7): 857-867.
[7] ZHENG Shijian, YAN Zhe, KONG Xiangfei, ZHANG Ruifeng. Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites[J]. 金属学报, 2022, 58(6): 709-725.
[8] PAN Chengcheng, ZHANG Xiang, YANG Fan, XIA Dahai, HE Chunnian, HU Wenbin. Corrosion and Cavitation Erosion Behavior of GLNN/Cu Composite in Simulated Seawater[J]. 金属学报, 2022, 58(5): 599-609.
[9] WANG Haowei, ZHAO Dechao, WANG Mingliang. A Review of the Corrosion Protection Technology on In SituTiB2/Al Composites[J]. 金属学报, 2022, 58(4): 428-443.
[10] ZHANG Lei, SHI Tao, HUANG Huogen, ZHANG Pei, ZHANG Pengguo, WU Min, FA Tao. Phase Separation and Solidification Sequence of Uranium-Based Amorphous Composites[J]. 金属学报, 2022, 58(2): 225-230.
[11] HU Chen, PAN Shuai, HUANG Mingxin. Strong and Tough Heterogeneous TWIP Steel Fabricated by Warm Rolling[J]. 金属学报, 2022, 58(11): 1519-1526.
[12] CHEN Run, WANG Shuai, AN Qi, ZHANG Rui, LIU Wenqi, HUANG Lujun, GENG Lin. Effect of Hot Extrusion and Heat Treatment on the Microstructure and Tensile Properties of Network Structured TiBw/TC18 Composites[J]. 金属学报, 2022, 58(11): 1478-1488.
[13] NIE Jinfeng, WU Yuli, XIE Kewei, LIU Xiangfa. Microstructure and Thermal Stability of Heterostructured Al-AlN Nanocomposite[J]. 金属学报, 2022, 58(11): 1497-1508.
[14] FAN Genlian, GUO Zhiqi, TAN Zhanqiu, LI Zhiqiang. Architecture Design Strategies and Strengthening-Toughening Mechanisms of Metal Matrix Composites[J]. 金属学报, 2022, 58(11): 1416-1426.
[15] WANG Shuo, WANG Junsheng. Structural Evolution and Stability of the δ′/θ′/δ′ Composite Precipitate in Al-Li Alloys: A First-Principles Study[J]. 金属学报, 2022, 58(10): 1325-1333.
No Suggested Reading articles found!