Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (12): 1479-1486    DOI: 10.3724/SP.J.1037.2012.00419
Current Issue | Archive | Adv Search |
JIA Xiaojiao, ZHANG Jun, SU Haijun, SONG Kan, LIU Lin, FU Hengzhi
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072
Download:  PDF(2713KB) 
Export:  BibTeX | EndNote (RIS)      

Directionally solidified oxide eutectic in situ composites have been attracting increasing interest in recent years for use as the next generation of ultra–high–temperature structural materials because of their excellent high–temperature strength, oxidation and creep resistance, as well as outstanding microstructural stability. Al2O3/YAG/ZrO2 ternary eutectic in situ composites with high density are prepared by laser floating zone remelting technique. The microstructure evolution of Al2O3/YAG/ZrO2 ternary eutectic under high temperature gradient and different growth rates is investigated. The relationship between solidification rate and eutectic spacing for the ternary oxideeutectic is quantificationally characterized. On this basis, the mechanical properties and relationship between microstructure and fracture toughness are analysed. The results show that the directionally solidified Al2O3/YAG/ZrO2 ternary eutectic in situ composite belongs to typical irregular lamellar eutectic structure. The microstructure is rapidly refined with the increase of the solidification rate V . The minimal eutectic spacing observed is as fine as 0.46 μm when the solidification rate is 200 μm/s. The relationship between the average eutectic spacing (λav) and V is determined to be λavV 0.5=12.4 μm1.5·s−0.5. Moreover, the ternary eutectic lamellar spacing is much smaller than the binary one at the same solidification condition. The average hardness and room–temperature fracture toughness of the ternary eutectic are (19.0±1.0) GPa and (3.31±0.2) MPa·m1/2, respectively. As compared with the binary eutectic, the crack arrest, deflection and mismatch of thermal expansion coefficient of eutectic phases are the predominant toughening mechanisms of ternary eutectic composite.

Key words:  laser floating zone remelting      directional solidification      ternary eutectic      in situ composite      solidification microstructure      fracture toughness     
Received:  12 July 2012     
ZTFLH:  TG142  

Supported by National Natural Science Foundation of China (Nos.51002122 and 51272211), Natural Science Foundation of Shanxi Province (No.2010JQ6005) and Aeronautical Science Foundation of China (No.2010ZF53064)

Cite this article: 


URL:     OR

[1] Hirano K. J Eur Ceram Soc, 2005; 25: 1191

[2] Waku Y, Nakagawa N, Wakamoto T, Ohtsubo H, Shimizu K, Kohtoku Y. Nature, 1997; 389: 49

[3] Waku Y, Sakata S, Mitani A, Shimizu K. Mater Res Innovations, 2001; 5: 94

[4] Ochiai S, Ueda T, Sato K, Hojo M, Waku Y, Nakagawa N, Sakata S, Mitani A, Takahashi T. Compos Sci Technol, 2001; 61: 2117

[5] Su H J, Zhang J, Liu L, Eckert J, Fu H Z. Appl Phys Lett, 2011; 99: 221913

[6] Epelbaum B M, Shimamura K, Fukuda T, Suzuki K,Waku Y, Yoshikawa A. J Cryst Growth, 1999; 198–199: 471

[7] Lee J H, Yoshikawa A, Fukuda T, Waku Y. J Cryst Growth, 2001; 231: 115

[8] Su H J, Zhang J, Liu L, Fu H Z. Acta Metall Sin, 2008; 44: 457

(苏海军, 张军, 刘林, 傅恒志. 金属学报, 2008; 44: 457)

[9] Su H J, Zhang J, Cui C J, Liu L, Fu H Z. Mater Sci Eng, 2008; A479: 380

[10] Pastor J Y, Llorca J, Salazar A, Oliete P B, Francisco I D, Pena J I. J Am Ceram Soc, 2005; 88: 1488

[11] Pastor J Y, Llorca J, Mart´?n A, Pe˜na J I, Oliete P B. J Eur Ceram Soc, 2008; 28: 2345

[12] Su H J, Zhang J, Cui C J, Liu L, Fu H Z. J Cryst Growth, 2007; 307: 448

[13] Calderon Moreno J M, Yoshimura M. J Eur Ceram Soc, 2005; 25: 1365

[14] Oliete P B, Pe˜na J I, Larrea A, Orera V M, Llorca J, Pastor J Y, Mart´?n A, Segurado J. Adv Mater, 2007; 19: 2313

[15] Pe˜na J I, Larsson M, Merino R I, Francisco I D, Orera V M, Llorca J, Pastor J Y, Mart´?n A, Segurado J. J Eur Ceram Soc, 2006; 26: 3113

[16] Flemings M C. Solidification Processing. New York: McGraw–Hill Inc., 1974: 2121

[17] Sato T, Sayama Y. J Cryst Growth, 1974; 22: 259

[18] Song K, Zhang J, Jia X J, Su H J, Liu L, Fu H Z. J Cryst Growth, 2012; 345: 51

[19] Lee J H, Yoshikawa A, Kaiden H, Lebbou K, Fukuda T, Yoon D H, Waku Y. J Cryst Growth, 2001; 231: 179

[20] Andreeta E R M, Andreeta M R B, Hernandes A C. J Cryst Growth, 2002; 234: 782

[21] Jackson K A, Hunt J D. Trans Met Soc Aime, 1966; 236: 1129

[22] Waku Y, Sakata S, Mitani A, Shimizu K. J Mater Sci, 2002; 37: 2975

[23] Oliete P B, Pe˜na J I. J Cryst Growth, 2007; 304: 514

[24] Trivedi R, Kurz W. Acta Metall Mater, 1994; 42: 15

[25] Scriven L E, Sternling C V. Nature, 1960; 187: 186

[26] Bohm J, L¨udge A, Schr¨oderW. In: Hurle D T J ed., Handbook of Crystal Growth, Amsterdam: Elsevier, 1994: 214

[27] Niihara K. J Mater Sci Lett, 1983; 2: 221

[28] Anstis G R, Chantikul P, Lawn B R, Marshall D B. J Am Ceram Soc, 1981; 64: 533

[29] Su H J. PhD Thesis, Northwestern Polytechnical University, Xi’an, 2009

(苏海军. 西北工业大学博士学位论文, 西安, 2009)

[30] Larrea A, Orera V M, Merino R I, Pe˜na J I. J Eur Ceram Soc, 2005; 25: 1419

[31] Llorca J, Pastor J Y, Poza P, Pe˜na J I, Francisco I, Larrea A, Orera V M. J Am Ceram Soc, 2004; 87: 633

[32] Pastor J Y, Poza P, Llorca J, Pe˜na J I, Merino R I, Orera V M. Mater Sci Eng, 2001; A308: 241

[1] DENG Congkun,JIANG Hongxiang,ZHAO Jiuzhou,HE Jie,ZHAO Lei. Study on the Solidification of Ag-Ni Monotectic Alloy[J]. 金属学报, 2020, 56(2): 212-220.
[2] XU Qingyan,YANG Cong,YAN Xuewei,LIU Baicheng. Development of Numerical Simulation in Nickel-Based Superalloy Turbine Blade Directional Solidification[J]. 金属学报, 2019, 55(9): 1175-1184.
[3] ZHANG Jian,WANG Li,WANG Dong,XIE Guang,LU Yuzhang,SHEN Jian,LOU Langhong. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2019, 55(9): 1077-1094.
[4] Hui FANG,Hua XUE,Qianyu TANG,Qingyu ZHANG,Shiyan PAN,Mingfang ZHU. Dendrite Coarsening and Secondary Arm Migration in the Mushy Zone During Directional Solidification:[J]. 金属学报, 2019, 55(5): 664-672.
[5] Yan YANG, Guangyu YANG, Shifeng LUO, Lei XIAO, Wanqi JIE. Microstructures and Growth Orientation of Directionally Solidification Mg-14.61Gd Alloy[J]. 金属学报, 2019, 55(2): 202-212.
[6] JIN Hao, JIA Qing, LIU Ronghua, XIAN Quangang, CUI Yuyou, XU Dongsheng, YANG Rui. Seed Preparation and Orientation Control of PST Crystals of Ti-47Al Alloy[J]. 金属学报, 2019, 55(12): 1519-1526.
[7] Lin LIU, Dejian SUN, Taiwen HUANG, Yanbin ZHANG, Yafeng LI, Jun ZHANG, Hengzhi FU. Directional Solidification Under High Thermal Gradient and Its Application in Superalloys Processing[J]. 金属学报, 2018, 54(5): 615-626.
[8] Yuan HOU, Zhongming REN, Jiang WANG, Zhenqiang ZHANG, Xia LI. Effect of Longitudinal Static Magnetic Field on the Columnar to Equiaxed Transition in Directionally Solidified GCr15 Bearing Steel[J]. 金属学报, 2018, 54(5): 801-808.
[9] Guohua WU, Yushi CHEN, Wenjiang DING. Current Research and Future Prospect on Microstructures Controlling of High Performance Magnesium Alloys During Solidification[J]. 金属学报, 2018, 54(5): 637-646.
[10] Guang CHEN, Gong ZHENG, Zhixiang QI, Jinpeng ZHANG, Pei LI, Jialin CHENG, Zhongwu ZHANG. Research Progress on Controlled Solidificationand Its Applications[J]. 金属学报, 2018, 54(5): 669-681.
[11] Jincheng WANG, Chunwen GUO, Junjie LI, Zhijun WANG. Recent Progresses in Competitive Grain Growth During Directional Solidification[J]. 金属学报, 2018, 54(5): 657-668.
[12] Huijun KANG, Jinling LI, Tongmin WANG, Jingjie GUO. Growth Behavior of Primary Intermetallic Phases and Mechanical Properties for Directionally Solidified Al-Mn-Be Alloy[J]. 金属学报, 2018, 54(5): 809-823.
[13] Yanqing SU, Tong LIU, Xinzhong LI, Ruirun CHEN, Jingjie GUO, Hengzhi FU. The Evolution of Seeding Technique for the Lamellar Orientation Controlling of γ-TiAl Based Alloys[J]. 金属学报, 2018, 54(5): 647-656.
[14] Yanxiang LI, Xiaobang LIU. Directionally Solidified Porous Metals: A Review[J]. 金属学报, 2018, 54(5): 727-741.
[15] Yizhe LI, Baoming GONG, Xiuguo LIU, Dongpo WANG, Caiyan DENG. Out-of-Plane Constraint Effect on the Fracture Toughness of Single Edge Notch Tension Specimens[J]. 金属学报, 2018, 54(12): 1785-1791.
No Suggested Reading articles found!