Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (12): 1479-1486    DOI: 10.3724/SP.J.1037.2012.00419
Current Issue | Archive | Adv Search |
MICROSTRUCTURES AND MECHANICAL PROPERTIES OF Al2O3–BASIC EUTECTIC IN SITU COMPOSITES DIRECTIONALLY SOLIDIFIED BY LASER FLOATING ZONE REMELTING
JIA Xiaojiao, ZHANG Jun, SU Haijun, SONG Kan, LIU Lin, FU Hengzhi
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072
Cite this article: 

JIA Xiaojiao ZHANG Jun SU Haijun SONG Kan LIU Lin FU Hengzhi. MICROSTRUCTURES AND MECHANICAL PROPERTIES OF Al2O3–BASIC EUTECTIC IN SITU COMPOSITES DIRECTIONALLY SOLIDIFIED BY LASER FLOATING ZONE REMELTING. Acta Metall Sin, 2012, 48(12): 1479-1486.

Download:  PDF(2713KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Directionally solidified oxide eutectic in situ composites have been attracting increasing interest in recent years for use as the next generation of ultra–high–temperature structural materials because of their excellent high–temperature strength, oxidation and creep resistance, as well as outstanding microstructural stability. Al2O3/YAG/ZrO2 ternary eutectic in situ composites with high density are prepared by laser floating zone remelting technique. The microstructure evolution of Al2O3/YAG/ZrO2 ternary eutectic under high temperature gradient and different growth rates is investigated. The relationship between solidification rate and eutectic spacing for the ternary oxideeutectic is quantificationally characterized. On this basis, the mechanical properties and relationship between microstructure and fracture toughness are analysed. The results show that the directionally solidified Al2O3/YAG/ZrO2 ternary eutectic in situ composite belongs to typical irregular lamellar eutectic structure. The microstructure is rapidly refined with the increase of the solidification rate V . The minimal eutectic spacing observed is as fine as 0.46 μm when the solidification rate is 200 μm/s. The relationship between the average eutectic spacing (λav) and V is determined to be λavV 0.5=12.4 μm1.5·s−0.5. Moreover, the ternary eutectic lamellar spacing is much smaller than the binary one at the same solidification condition. The average hardness and room–temperature fracture toughness of the ternary eutectic are (19.0±1.0) GPa and (3.31±0.2) MPa·m1/2, respectively. As compared with the binary eutectic, the crack arrest, deflection and mismatch of thermal expansion coefficient of eutectic phases are the predominant toughening mechanisms of ternary eutectic composite.

Key words:  laser floating zone remelting      directional solidification      ternary eutectic      in situ composite      solidification microstructure      fracture toughness     
Received:  12 July 2012     
ZTFLH:  TG142  
Fund: 

Supported by National Natural Science Foundation of China (Nos.51002122 and 51272211), Natural Science Foundation of Shanxi Province (No.2010JQ6005) and Aeronautical Science Foundation of China (No.2010ZF53064)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00419     OR     https://www.ams.org.cn/EN/Y2012/V48/I12/1479

[1] Hirano K. J Eur Ceram Soc, 2005; 25: 1191

[2] Waku Y, Nakagawa N, Wakamoto T, Ohtsubo H, Shimizu K, Kohtoku Y. Nature, 1997; 389: 49

[3] Waku Y, Sakata S, Mitani A, Shimizu K. Mater Res Innovations, 2001; 5: 94

[4] Ochiai S, Ueda T, Sato K, Hojo M, Waku Y, Nakagawa N, Sakata S, Mitani A, Takahashi T. Compos Sci Technol, 2001; 61: 2117

[5] Su H J, Zhang J, Liu L, Eckert J, Fu H Z. Appl Phys Lett, 2011; 99: 221913

[6] Epelbaum B M, Shimamura K, Fukuda T, Suzuki K,Waku Y, Yoshikawa A. J Cryst Growth, 1999; 198–199: 471

[7] Lee J H, Yoshikawa A, Fukuda T, Waku Y. J Cryst Growth, 2001; 231: 115

[8] Su H J, Zhang J, Liu L, Fu H Z. Acta Metall Sin, 2008; 44: 457

(苏海军, 张军, 刘林, 傅恒志. 金属学报, 2008; 44: 457)

[9] Su H J, Zhang J, Cui C J, Liu L, Fu H Z. Mater Sci Eng, 2008; A479: 380

[10] Pastor J Y, Llorca J, Salazar A, Oliete P B, Francisco I D, Pena J I. J Am Ceram Soc, 2005; 88: 1488

[11] Pastor J Y, Llorca J, Mart´?n A, Pe˜na J I, Oliete P B. J Eur Ceram Soc, 2008; 28: 2345

[12] Su H J, Zhang J, Cui C J, Liu L, Fu H Z. J Cryst Growth, 2007; 307: 448

[13] Calderon Moreno J M, Yoshimura M. J Eur Ceram Soc, 2005; 25: 1365

[14] Oliete P B, Pe˜na J I, Larrea A, Orera V M, Llorca J, Pastor J Y, Mart´?n A, Segurado J. Adv Mater, 2007; 19: 2313

[15] Pe˜na J I, Larsson M, Merino R I, Francisco I D, Orera V M, Llorca J, Pastor J Y, Mart´?n A, Segurado J. J Eur Ceram Soc, 2006; 26: 3113

[16] Flemings M C. Solidification Processing. New York: McGraw–Hill Inc., 1974: 2121

[17] Sato T, Sayama Y. J Cryst Growth, 1974; 22: 259

[18] Song K, Zhang J, Jia X J, Su H J, Liu L, Fu H Z. J Cryst Growth, 2012; 345: 51

[19] Lee J H, Yoshikawa A, Kaiden H, Lebbou K, Fukuda T, Yoon D H, Waku Y. J Cryst Growth, 2001; 231: 179

[20] Andreeta E R M, Andreeta M R B, Hernandes A C. J Cryst Growth, 2002; 234: 782

[21] Jackson K A, Hunt J D. Trans Met Soc Aime, 1966; 236: 1129

[22] Waku Y, Sakata S, Mitani A, Shimizu K. J Mater Sci, 2002; 37: 2975

[23] Oliete P B, Pe˜na J I. J Cryst Growth, 2007; 304: 514

[24] Trivedi R, Kurz W. Acta Metall Mater, 1994; 42: 15

[25] Scriven L E, Sternling C V. Nature, 1960; 187: 186

[26] Bohm J, L¨udge A, Schr¨oderW. In: Hurle D T J ed., Handbook of Crystal Growth, Amsterdam: Elsevier, 1994: 214

[27] Niihara K. J Mater Sci Lett, 1983; 2: 221

[28] Anstis G R, Chantikul P, Lawn B R, Marshall D B. J Am Ceram Soc, 1981; 64: 533

[29] Su H J. PhD Thesis, Northwestern Polytechnical University, Xi’an, 2009

(苏海军. 西北工业大学博士学位论文, 西安, 2009)

[30] Larrea A, Orera V M, Merino R I, Pe˜na J I. J Eur Ceram Soc, 2005; 25: 1419

[31] Llorca J, Pastor J Y, Poza P, Pe˜na J I, Francisco I, Larrea A, Orera V M. J Am Ceram Soc, 2004; 87: 633

[32] Pastor J Y, Poza P, Llorca J, Pe˜na J I, Merino R I, Orera V M. Mater Sci Eng, 2001; A308: 241

[1] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] SU Zhenqi, ZHANG Congjiang, YUAN Xiaotan, HU Xingjin, LU Keke, REN Weili, DING Biao, ZHENG Tianxiang, SHEN Zhe, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Formation and Evolution of Stray Grains on Remelted Interface in the Seed Crystal During the Directional Solidification of Single-Crystal Superalloys Assisted by Vertical Static Magnetic Field[J]. 金属学报, 2023, 59(12): 1568-1580.
[4] LI Yanqiang, ZHAO Jiuzhou, JIANG Hongxiang, HE Jie. Microstructure Formation in Directionally Solidified Pb-Al Alloy[J]. 金属学报, 2022, 58(8): 1072-1082.
[5] GU Ruicheng, ZHANG Jian, ZHANG Mingyang, LIU Yanyan, WANG Shaogang, JIAO Da, LIU Zengqian, ZHANG Zhefeng. Fabrication of Mg-Based Composites Reinforced by SiC Whisker Scaffolds with Three-Dimensional Interpenetrating-Phase Architecture and Their Mechanical Properties[J]. 金属学报, 2022, 58(7): 857-867.
[6] WU Guohua, TONG Xin, JIANG Rui, DING Wenjiang. Grain Refinement of As-Cast Mg-RE Alloys: Research Progress and Future Prospect[J]. 金属学报, 2022, 58(4): 385-399.
[7] HU Chen, PAN Shuai, HUANG Mingxin. Strong and Tough Heterogeneous TWIP Steel Fabricated by Warm Rolling[J]. 金属学报, 2022, 58(11): 1519-1526.
[8] CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology[J]. 金属学报, 2021, 57(9): 1141-1154.
[9] ZHENG Qiuju, YE Zhongfei, JIANG Hongxiang, LU Ming, ZHANG Lili, ZHAO Jiuzhou. Effect of Micro-Alloying Element La on Solidification Microstructure and Mechanical Properties of Hypoeutectic Al-Si Alloys[J]. 金属学报, 2021, 57(1): 103-110.
[10] ZHANG Xiaoli, FENG Li, YANG Yanhong, ZHOU Yizhou, LIU Guiqun. Influence of Secondary Orientation on Competitive Grain Growth of Nickel-Based Superalloys[J]. 金属学报, 2020, 56(7): 969-978.
[11] DENG Congkun,JIANG Hongxiang,ZHAO Jiuzhou,HE Jie,ZHAO Lei. Study on the Solidification of Ag-Ni Monotectic Alloy[J]. 金属学报, 2020, 56(2): 212-220.
[12] XU Qingyan,YANG Cong,YAN Xuewei,LIU Baicheng. Development of Numerical Simulation in Nickel-Based Superalloy Turbine Blade Directional Solidification[J]. 金属学报, 2019, 55(9): 1175-1184.
[13] ZHANG Jian,WANG Li,WANG Dong,XIE Guang,LU Yuzhang,SHEN Jian,LOU Langhong. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2019, 55(9): 1077-1094.
[14] Hui FANG,Hua XUE,Qianyu TANG,Qingyu ZHANG,Shiyan PAN,Mingfang ZHU. Dendrite Coarsening and Secondary Arm Migration in the Mushy Zone During Directional Solidification:[J]. 金属学报, 2019, 55(5): 664-672.
[15] Yan YANG, Guangyu YANG, Shifeng LUO, Lei XIAO, Wanqi JIE. Microstructures and Growth Orientation of Directionally Solidification Mg-14.61Gd Alloy[J]. 金属学报, 2019, 55(2): 202-212.
No Suggested Reading articles found!