Influence of Annealing Temperature on Both Mechanical and Damping Properties of Nb-Alloyed High Mn Steel
WANG Yu, HU Bin, LIU Xingyi, ZHANG Hao, ZHANG Haoyun, GUAN Zhiqiang, LUO Haiwen()
School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
Cite this article:
WANG Yu, HU Bin, LIU Xingyi, ZHANG Hao, ZHANG Haoyun, GUAN Zhiqiang, LUO Haiwen. Influence of Annealing Temperature on Both Mechanical and Damping Properties of Nb-Alloyed High Mn Steel. Acta Metall Sin, 2021, 57(12): 1588-1594.
In the engineering design of machines and vehicles, the technologies involving vibration and noise reduction receive considerable attention as they can prevent undesirable fatigue failures and offer more comfort to the users. Compared with other damping alloys, high Mn steel has been intensively studied because its high strength and excellent damp capacity can be achieved simultaneously at a low cost. Particularly, it has a strong potential of circumventing the long-existing trade-off of strength and damping capacity for more applications in the new circumstance. In this study, the microstructures and damping and mechanical properties of a novel hot-rolled Nb-alloyed high Mn steel annealed at the temperature range of 750-1050oC were investigated. Heterogeneous recrystallization occurred during hot rolling, resulting in the formation of recrystallized bands along the rolling direction, in which fine lamellar ε martensite grains were interwoven with austenite; the coarse unrecrystallized ε martensite blocks were located between the bands. The latter was reversely transformed to the coarse austenite with a single orientation, remained unrecrystallized, and transformed back to the coarse highly-dislocated ε martensite blocks during the annealing below 850oC. Conversely, the ε martensite blocks reversely transformed the austenite grains partially and completely recrystallized to form even more refined grains with multi-orientations during annealing at 950 and 1050oC, respectively. Thus, the recrystallized austenite grains transformed to fine ε lamellar martensite, and the austenite grains were retained with multi-orientations, both having a low density of dislocation. Consequently, the higher annealing temperature led to higher damping capacity but lower strength; whereas, the partial recrystallization occurring during annealing at 950oC resulted in the best combination of mechanical and damping properties. Therefore, this indicates that tailoring the extent of recrystallization via the Nb-alloying and annealing process for high Mn steel can be an effective method to achieve different combinations of strength and damping capacity.
Fig.1 Microstructural characterization of hot rolled (HR) high Mn steel (Re-γ, εB, and εL represent recrystallized austenite, the coarse and block martensite, and lath ε martensite, respectively)
Fig.2 Microstructures characterized by EBSD when the hot rolled high Mn steel was annealed at the temperatures of 750-1050℃
Fig.3 Dependence of phase volume fractions in the studied high Mn steel on annealing temperature (a) and transformation temperatures, including martensite start temperature (Ms), austenitization start (As) and finish (Af) temperatures during cooling and heating determined by the dilation measurements (b)
Fig.4 The damping and mechanical properties of Nb-contained high Mn steel
Fig.5 δ values varied with temperature during heating and cooling on the two specimens hot rolled and annealed at 1050oC
1
Jee K K, Jang W Y, Baik S H, et al. Damping mechanism and application of Fe-Mn based alloys [J]. Mater. Sci. Eng., 1999, A273-275: 538
2
Huang S K, Wen Y H, Li N, et al. Application of damping mechanism model and stacking fault probability in Fe-Mn alloy [J]. Mater. Charact., 2008, 59: 681
3
Sawaguchi T, Bujoreanu L G, Kikuchi T, et al. Effects of Nb and C in solution and in NbC form on the transformation-related internal friction of Fe-17Mn (mass%) alloys [J]. ISIJ Int., 2008, 48: 99
4
Choi W S, De Cooman B C. Effect of carbon on the damping capacity and mechanical properties of thermally trained Fe-Mn based high damping alloys [J]. Mater. Sci. Eng., 2017, A700: 641
5
Jun J H, Choi C S. The influence of Mn content on microstructure and damping capacity in Fe-(17∼23)%Mn alloys [J]. Mater. Sci. Eng., 1998, A252: 133
6
Kim J C, Han D W, Baik S H, et al. Effects of alloying elements on martensitic transformation behavior and damping capacity in Fe-17Mn alloy [J]. Mater. Sci. Eng., 2004, A378: 323
7
Huang S K, Li N, Wen Y H, et al. Temperature dependence of the damping capacity in Fe-19.35Mn alloy [J]. J. Alloys Compd., 2008, 455: 225
8
Wang S H, Li J, Chai F, et al. Influence of solution temperature on γ→ε transformation and damping capacity of Fe-19Mn Alloy [J]. Acta Metall. Sin., 2020, 56: 1217
Wang H J, Wang H, Zhang R Q, et al. Effect of high strain amplitude and pre-deformation on damping property of Fe-Mn alloy [J]. J. Alloys Compd., 2019, 770: 252
10
Huang S K, Li N, Wen Y H, et al. Effects of deep-cooling and temperature on damping capacity of Fe-Mn alloy [J]. Acta Metall. Sin., 2007, 43: 807
Huang S K, Li N, Wen Y H, et al. Effect of Si and Cr on stacking fault probability and damping capacity of Fe-Mn alloy [J]. Mater. Sci. Eng., 2008, A479: 223
12
Shin S, Kwon M, Cho W, et al. The effect of grain size on the damping capacity of Fe-17 wt%Mn [J]. Mater. Sci. Eng., 2017, A683: 187
13
Wang H, Wang F, Liu H T, et al. Influence of alloy elements (Mo, Nb, Ti) on the strength and damping capacity of Fe-Cr based alloy [J]. Mater. Sci. Eng., 2016, A667: 326
14
Hughes D A, Hansen N, Bammann D J. Geometrically necessary boundaries, incidental dislocation boundaries and geometrically necessary dislocations [J]. Scr. Mater., 2003, 48: 147
15
Pierce D T, Jiménez J A, Bentley J, et al. The influence of manganese content on the stacking fault and austenite/ε-martensite interfacial energies in Fe-Mn-(Al-Si) steels investigated by experiment and theory [J]. Acta Mater., 2014, 68: 238
16
Cho S H, Kang K B, Jonas J J. Effect of manganese on recrystallisation kinetics of niobium microalloyed steel [J]. Mater. Sci. Technol., 2002, 18: 389
17
Takaki S, Nakatsu H, Tokunaga Y. Effects of austenite grain size on ε martensitic transformation in Fe-15mass%Mn Alloy [J]. Mater. Trans. JIM, 1993, 34: 489
18
Bracke L, Verbeken K, Kestens L, et al. Microstructure and texture evolution during cold rolling and annealing of a high Mn TWIP steel [J]. Acta Mater., 2009, 57: 1512
19
Zhao P C, Chen B, Zheng Z G, et al. Microstructure and texture evolution in a post-dynamic recrystallized titanium during annealing, monotonic and cyclic loading [J]. Metall. Mater. Trans., 2020, 52A: 394
20
Sevsek S, Brasche F, Molodov D A, et al. On the influence of grain size on the TWIP/TRIP-effect and texture development in high-manganese steels [J]. Mater. Sci. Eng., 2019, A754: 152
21
Ma Y L, Ge T S. Dislocation damping peaks appearing within the temperature range for the direct and inverse martensitic transformations of an iron-manganese alloy [J]. Acta Phys. Sin., 1964, 20: 909
Yang X S, Sun S, Ruan H H, et al. Shear and shuffling accomplishing polymorphic fcc γ→hcp ε→bct α martensitic phase transformation [J]. Acta Mater., 2017, 136: 347
23
Yang D P, Wu D, Yi H L. Reverse transformation from martensite into austenite in a medium-Mn steel [J]. Scr. Mater., 2019, 161: 1
24
Filho I R S, da Silva A K, Sandim M J R, et al. Martensite to austenite reversion in a high-Mn steel: Partitioning-dependent two-stage kinetics revealed by atom probe tomography, in-situ magnetic measurements and simulation [J]. Acta Mater., 2019, 166: 178
25
Li X, Wei L L, Chen L Q, et al. Work hardening behavior and tensile properties of a high-Mn damping steel at elevated temperatures [J]. Mater. Charact., 2018, 144: 575