|
|
Local Chemical Order in High-Entropy Alloys |
DING Jun( ), WANG Zhangjie( ) |
State Key Laboratory of Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China |
|
Cite this article:
DING Jun, WANG Zhangjie. Local Chemical Order in High-Entropy Alloys. Acta Metall Sin, 2021, 57(4): 413-424.
|
Abstract High-entropy alloys are designed based on the concept of multi-principle elements and high-configuration entropy. They exhibit excellent mechanical, high-temperature, and irradiation-tolerant properties, indicating their great potential for high-performance structural materials in the recent decade. Since the discovery of high-entropy alloys, most of the related research work was based on the classical assumption of ideal solid solution. However, recent investigation have showed the local chemical order in high-entropy alloys and how such atomic-level structure tunes the deformation mechanism, which has attracted significant attention. This study reviewed the recent progress in the theoretical description and experimental characterization of the local chemical order as well as its impact on the mechanical properties of high-entropy alloys. Besides, a brief perspective on the research of understanding and optimizing high-entropy alloys from the local chemical order is proposed.
|
Received: 21 December 2020
|
|
Fund: National Natural Science Foundation of China(51971167);National Youth Talents Program |
About author: WANG Zhangjie, associate professor, Tel: (029)82664764, E-mail: zhangjiewang@xjtu.edu.cn DING Jun, professor, Tel: (029)82664764, E-mail: dingsn@xjtu.edu.cn
|
1 |
Klement W, Willens R H, Duwez P. Non-crystalline structure in solidified gold-silicon alloys [J]. Nature, 1960, 187: 869
|
2 |
Laughlin D E, Hono K. Physical Metallurgy [M]. 5th Ed., Singapore: Elsevier, 2014: 305
|
3 |
Johnson W L. Bulk glass-forming metallic alloys: Science and technology [J]. MRS Bull., 1999, 24: 42
|
4 |
Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys [J]. Acta Mater., 2000, 48: 279
|
5 |
Wang W H, Dong C, Shek C H. Bulk metallic glasses [J]. Mater. Sci. Eng., 2004, R44: 45
|
6 |
Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys [J]. Prog. Mater. Sci., 2014, 61: 1
|
7 |
Pickering E J, Jones N G. High-entropy alloys: A critical assessment of their founding principles and future prospects [J]. Int. Mater. Rev., 2016, 61: 183
|
8 |
Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta Mater., 2017, 122: 448
|
9 |
George E P, Raabe D, Ritchie R O. High-entropy alloys [J]. Nat. Rev. Mater., 2019, 4: 515
|
10 |
George E P, Curtin W A, Tasan C C. High entropy alloys: A focused review of mechanical properties and deformation mechanisms [J]. Acta Mater., 2020, 188: 435
|
11 |
Li Z Z, Zhao S T, Ritchie R O, et al. Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys [J]. Prog. Mater. Sci., 2019, 102: 296
|
12 |
Miracle D B. High entropy alloys as a bold step forward in alloy development [J]. Nat. Commun., 2019, 10: 1805
|
13 |
Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
|
14 |
Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, A375-377: 213
|
15 |
Ye Y F, Wang Q, Lu J, et al. High-entropy alloy: Challenges and prospects [J]. Mater. Today, 2016, 19: 349
|
16 |
Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345: 1153
|
17 |
Gludovatz B, Hohenwarter A, Thurston K V S, et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures [J]. Nat. Commun., 2016, 7: 10602
|
18 |
Laplanche G, Kostka A, Horst O M, et al. Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy [J]. Acta Mater., 2016, 118: 152
|
19 |
Laplanche G, Kostka A, Reinhart C, et al. Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi [J]. Acta Mater., 2017, 128: 292
|
20 |
Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534: 227
|
21 |
Huang H L, Wu Y, He J Y, et al. Phase‐transformation ductilization of brittle high-entropy alloys via metastability engineering [J]. Adv. Mater., 2017, 29: 1701678
|
22 |
Otto F, Dlouhy A, Pradeep K G, et al. Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures [J]. Acta Mater., 2016, 112: 40
|
23 |
Lei Z F, Liu X J, Wu Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes [J]. Nature, 2018, 563: 546
|
24 |
Senkov O N, Miracle D B, Chaput K J, et al. Development and exploration of refractory high entropy alloys—A review [J]. J. Mater. Res., 2018, 33: 3092
|
25 |
Senkov O N, Wilks G B, Miracle D B, et al. Refractory high-entropy alloys [J]. Intermetallics, 2010, 18: 1758
|
26 |
Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys [J]. Intermetallics, 2011, 19: 698
|
27 |
Maresca F, Curtin W A. Mechanistic origin of high strength in refractory BCC high entropy alloys up to 1900 K [J]. Acta Mater., 2020, 182: 235
|
28 |
Zhang Y W, Stocks G M, Jin K, et al. Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys [J]. Nat. Commun., 2015, 6: 8736
|
29 |
Lu C Y, Niu L L, Chen N J, et al. Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys [J]. Nat. Commun., 2016, 7: 13564
|
30 |
Granberg F, Nordlund K, Ullah M W, et al. Mechanism of radiation damage reduction in equiatomic multicomponent single phase alloys [J]. Phys. Rev. Lett., 2016, 116: 135504
|
31 |
El-Atwani O, Li N, Li M, et al. Outstanding radiation resistance of tungsten-based high-entropy alloys [J]. Sci. Adv., 2019, 5: eaav2002
|
32 |
Niu C N, Larosa C R, Miao J S, et al. Magnetically-driven phase transformation strengthening in high entropy alloys [J]. Nat. Commun., 2018, 9: 1363
|
33 |
Song H Q, Tian F Y, Hu Q M, et al. Local lattice distortion in high-entropy alloys [J]. Phys. Rev. Mater., 2017, 1: 023404
|
34 |
Zhang Z J, Mao M M, Wang J W, et al. Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi [J]. Nat. Commun., 2015, 6: 10143
|
35 |
Zhang Z J, Sheng H W, Wang Z J, et al. Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy [J]. Nat. Commun., 2017, 8: 14390
|
36 |
Zhao S J, Stocks G M, Zhang Y M, et al. Stacking fault energies of face-centered cubic concentrated solid solution alloys [J]. Acta Mater., 2017, 134: 334
|
37 |
Nöhring W G, Curtin W A. Dislocation cross-slip in fcc solid solution alloys [J]. Acta Mater., 2017, 128: 135
|
38 |
Yang T, Zhao Y L, Tong Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys [J]. Science, 2018, 362: 933
|
39 |
Huang S, Huang H, Li W, et al. Twinning in metastable high-entropy alloys [J]. Nat. Commun., 2018, 9: 2381
|
40 |
Zhang F, Wu Y, Lou H B, et al. Polymorphism in a high-entropy alloy [J]. Nat. Commun., 2017, 8: 15687
|
41 |
Troparevsky M C, Morris J R, Kent P R C, et al. Criteria for predicting the formation of single-phase high-entropy alloys [J]. Phys. Rev., 2015, 5X: 011041
|
42 |
Senkov O N, Miller J D, Miracle D B, et al. Accelerated exploration of multi-principal element alloys with solid solution phases [J]. Nat. Commun., 2015, 6: 6529
|
43 |
Ding J, Yu Q, Asta M, et al. Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys [J]. Proc. Natl. Acad. Sci. USA, 2018, 115: 8919
|
44 |
Li Q J, Sheng H, Ma E. Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways [J]. Nat. Commun., 2019, 10: 3563
|
45 |
Tamm A, Abloo A, Klintenberg M, et al. Atomic-scale properties of Ni-based FCC ternary, and quaternary alloys [J]. Acta Mater., 2015, 99: 307
|
46 |
Zhang F X, Zhao S J, Jin K, et al. Local structure and short-range order in a NiCoCr solid solution alloy [J]. Phys. Rev. Lett., 2017, 118: 205501
|
47 |
Ding Q Q, Zhang Y, Chen X, et al. Tuning element distribution, structure and properties by composition in high-entropy alloys [J]. Nature, 2019, 574: 223
|
48 |
Zhang R P, Zhao S T, Ding J, et al. Short-range order and its impact on the CrCoNi medium-entropy alloy [J]. Nature, 2020, 581: 283
|
49 |
Wu Y, Zhang F, Yuan X Y, et al. Short-range ordering and its effects on mechanical properties of high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 62: 214
|
50 |
Kostiuchenko T, Ruban A V, Neugebauer J, et al. Short-range order in face-centered cubic VCoNi alloys [J]. Phys. Rev. Mater., 2020, 4: 113802
|
51 |
Fernández-Caballero A, Wróbel J S, Mummery P M, et al. Short-range order in high entropy alloys: Theoretical formulation and application to Mo-Nb-Ta-V-W system [J]. J. Phase Equilib. Diffus., 2017, 38: 391
|
52 |
Feng R, Liaw P K, Gao M C, et al. First-principles prediction of high-entropy-alloy stability [J]. npj Comput. Mater., 2017, 3: 50
|
53 |
Santodonato L J, Zhang Y, Feygenson M, et al. Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy [J]. Nat. Commun., 2015, 6: 5964
|
54 |
Fantin A, Lepore G O, Manzoni A M, et al. Short-range chemical order and local lattice distortion in a compositionally complex alloy [J]. Acta Mater., 2020, 193: 329
|
55 |
Yin B L, Yoshida S, Tsuji N, et al. Yield strength and misfit volumes of NiCoCr and implications for short-range-order [J]. Nat. Commun., 2020, 11: 2507
|
56 |
Niu C, Zaddach A J, Oni A A, et al. Spin-driven ordering of Cr in the equiatomic high entropy alloy NiFeCrCo [J]. Appl. Phys. Lett., 2015, 106: 161906
|
57 |
Maiti S, Steurer W. Structural-disorder and its effect on mechanical properties in single-phase TaNbHfZr high-entropy alloy [J]. Acta Mater., 2016, 106: 87
|
58 |
Seol J B, Bae J W, Kim J G, et al. Short-range order strengthening in boron-doped high-entropy alloys for cryogenic applications [J]. Acta Mater., 2020, 194: 366
|
59 |
Smith L T W, Su Y Q, Xu S Z, et al. The effect of local chemical ordering on Frank-Read source activation in a refractory multi-principal element alloy [J]. Int. J. Plast., 2020, 134: 102850
|
60 |
Ma E. Unusual dislocation behavior in high-entropy alloys [J]. Scr. Mater., 2020, 181: 127
|
61 |
Li X G, Chen C, Zheng H, et al. Complex strengthening mechanisms in the NbMoTaW multi-principal element alloy [J]. npj Comput. Mater., 2020, 6: 70
|
62 |
Yin S, Ding J, Asta M, et al. Ab initio modeling of the energy landscape for screw dislocations in body-centered cubic high-entropy alloys [J]. npj Comput. Mater., 2020, 6: 110
|
63 |
Antillon E, Woodward C, Rao S I, et al. Chemical short range order strengthening in a model FCC high entropy alloy [J]. Acta Mater., 2020, 190: 29
|
64 |
Jian W R, Xie Z C, Xu S Z, et al. Effects of lattice distortion and chemical short-range order on the mechanisms of deformation in medium entropy alloy CoCrNi [J]. Acta Mater., 2020, 199: 352
|
65 |
Wu Z K, Tian F Y. Effect of ordering on stacking fault energy of VNiFeCo high entropy alloys [J]. Mater. Today Commun., 2020, 25: 101336
|
66 |
Nöhring W G, Curtin W A. Design using randomness: A new dimension for metallurgy [J]. Scr. Mater., 2020, 187: 210
|
67 |
Ma E, Wu X L. Tailoring heterogeneities in high-entropy alloys to promote strength-ductility synergy [J]. Nat. Commun., 2019, 10: 5623
|
68 |
Basu I, De Hosson J T M. Strengthening mechanisms in high entropy alloys: Fundamental issues [J]. Scr. Mater., 2020, 187: 148
|
69 |
Chen B, Li S Z, Zong H X, et al. Unusual activated processes controlling dislocation motion in body-centered-cubic high-entropy alloys [J]. Proc. Natl. Acad. Sci. USA, 2020, 117: 16199
|
70 |
Cao F H, Wang Y J, Dai L H. Novel atomic-scale mechanism of incipient plasticity in a chemically complex CrCoNi medium-entropy alloy associated with inhomogeneity in local chemical environment [J]. Acta Mater., 2020, 194: 283
|
71 |
Sun X, Lu S, Xie R W, et al. Can experiment determine the stacking fault energy of metastable alloys? [J] Mater. Des., 2021, 199: 109396
|
72 |
Zhu C, Lu Z P, Nieh T G. Incipient plasticity and dislocation nucleation of FeCoCrNiMn high-entropy alloy [J]. Acta Mater., 2013, 61: 2993
|
73 |
Zhao Y K, Park J M, Jang J I, et al. Bimodality of incipient plastic strength in face-centered cubic high-entropy alloys [J]. Acta Mater., 2021, 202: 124
|
74 |
Varvenne C, Luque A, Curtin W A. Theory of strengthening in fcc high entropy alloys [J]. Acta Mater., 2016, 118: 164
|
75 |
Reinhard L, Moss S C. Recent studies of short-range order in alloys: The Cowley theory revisited [J]. Ultramicroscopy, 1993, 52: 223
|
76 |
Zhao Y K, Wang X T, Cao T Q, et al. Effect of grain size on the strain rate sensitivity of CoCrFeNi high-entropy alloy [J]. Mater. Sci. Eng., 2020, A782: 139281
|
77 |
Hong S I, Moon J, Hong S K, et al. Thermally activated deformation and the rate controlling mechanism in CoCrFeMnNi high entropy alloy [J]. Mater. Sci. Eng., 2017, A682: 569
|
78 |
Zhou D S, Chen Z H, Ehara K, et al. Effects of annealing on hardness, yield strength and dislocation structure in single crystals of the equiatomic Cr-Mn-Fe-Co-Ni high entropy alloy [J]. Scr. Mater., 2021, 191: 173
|
79 |
Ketov S V, Sun Y H, Nachum S, et al. Rejuvenation of metallic glasses by non-affine thermal strain [J]. Nature, 2015, 524: 200
|
80 |
Pan J, Ivanov Y P, Zhou W H, et al. Strain-hardening and suppression of shear-banding in rejuvenated metallic glass [J]. Nature, 2020, 578: 559
|
81 |
Huang S, Holmström E, Eriksson O, et al. Mapping the magnetic transition temperatures for medium- and high-entropy alloys [J]. Intermetallics, 2018, 95: 80
|
82 |
Yao Y G, Huang Z N, Xie P F, et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles [J]. Science, 2018, 359: 1489
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|