Please wait a minute...
Acta Metall Sin  2021, Vol. 57 Issue (4): 413-424    DOI: 10.11900/0412.1961.2020.00513
Overview Current Issue | Archive | Adv Search |
Local Chemical Order in High-Entropy Alloys
DING Jun(), WANG Zhangjie()
State Key Laboratory of Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
Cite this article: 

DING Jun, WANG Zhangjie. Local Chemical Order in High-Entropy Alloys. Acta Metall Sin, 2021, 57(4): 413-424.

Download:  HTML  PDF(1813KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

High-entropy alloys are designed based on the concept of multi-principle elements and high-configuration entropy. They exhibit excellent mechanical, high-temperature, and irradiation-tolerant properties, indicating their great potential for high-performance structural materials in the recent decade. Since the discovery of high-entropy alloys, most of the related research work was based on the classical assumption of ideal solid solution. However, recent investigation have showed the local chemical order in high-entropy alloys and how such atomic-level structure tunes the deformation mechanism, which has attracted significant attention. This study reviewed the recent progress in the theoretical description and experimental characterization of the local chemical order as well as its impact on the mechanical properties of high-entropy alloys. Besides, a brief perspective on the research of understanding and optimizing high-entropy alloys from the local chemical order is proposed.

Key words:  high-entropy alloy      local chemical order      mechanical property     
Received:  21 December 2020     
ZTFLH:  TG139  
Fund: National Natural Science Foundation of China(51971167);National Youth Talents Program
About author:  WANG Zhangjie, associate professor, Tel: (029)82664764, E-mail: zhangjiewang@xjtu.edu.cn
DING Jun, professor, Tel: (029)82664764, E-mail: dingsn@xjtu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00513     OR     https://www.ams.org.cn/EN/Y2021/V57/I4/413

Fig.1  Schematics of local structural feature in high-entropy alloys (HEAs), metallic glasses, and conventional alloys[43]
Fig.2  Schematic of typical atomic-level structure in HEAs
Fig.3  Characterizations of local chemical order in HEAs
Fig.4  Effect of local chemical order on the stacking fault energies in CrCoNi alloys
Fig.5  Planar dislocations slip influenced by local chemical order in CrCoNi alloys[48]
Fig.6  Tensile test of polycrystalline CoCrFeMnNi high-entropy alloy[77]
Fig.7  Strengthening induced by local chemical order[44]
1 Klement W, Willens R H, Duwez P. Non-crystalline structure in solidified gold-silicon alloys [J]. Nature, 1960, 187: 869
2 Laughlin D E, Hono K. Physical Metallurgy [M]. 5th Ed., Singapore: Elsevier, 2014: 305
3 Johnson W L. Bulk glass-forming metallic alloys: Science and technology [J]. MRS Bull., 1999, 24: 42
4 Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys [J]. Acta Mater., 2000, 48: 279
5 Wang W H, Dong C, Shek C H. Bulk metallic glasses [J]. Mater. Sci. Eng., 2004, R44: 45
6 Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys [J]. Prog. Mater. Sci., 2014, 61: 1
7 Pickering E J, Jones N G. High-entropy alloys: A critical assessment of their founding principles and future prospects [J]. Int. Mater. Rev., 2016, 61: 183
8 Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta Mater., 2017, 122: 448
9 George E P, Raabe D, Ritchie R O. High-entropy alloys [J]. Nat. Rev. Mater., 2019, 4: 515
10 George E P, Curtin W A, Tasan C C. High entropy alloys: A focused review of mechanical properties and deformation mechanisms [J]. Acta Mater., 2020, 188: 435
11 Li Z Z, Zhao S T, Ritchie R O, et al. Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys [J]. Prog. Mater. Sci., 2019, 102: 296
12 Miracle D B. High entropy alloys as a bold step forward in alloy development [J]. Nat. Commun., 2019, 10: 1805
13 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
14 Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, A375-377: 213
15 Ye Y F, Wang Q, Lu J, et al. High-entropy alloy: Challenges and prospects [J]. Mater. Today, 2016, 19: 349
16 Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345: 1153
17 Gludovatz B, Hohenwarter A, Thurston K V S, et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures [J]. Nat. Commun., 2016, 7: 10602
18 Laplanche G, Kostka A, Horst O M, et al. Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy [J]. Acta Mater., 2016, 118: 152
19 Laplanche G, Kostka A, Reinhart C, et al. Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi [J]. Acta Mater., 2017, 128: 292
20 Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534: 227
21 Huang H L, Wu Y, He J Y, et al. Phase‐transformation ductilization of brittle high-entropy alloys via metastability engineering [J]. Adv. Mater., 2017, 29: 1701678
22 Otto F, Dlouhy A, Pradeep K G, et al. Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures [J]. Acta Mater., 2016, 112: 40
23 Lei Z F, Liu X J, Wu Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes [J]. Nature, 2018, 563: 546
24 Senkov O N, Miracle D B, Chaput K J, et al. Development and exploration of refractory high entropy alloys—A review [J]. J. Mater. Res., 2018, 33: 3092
25 Senkov O N, Wilks G B, Miracle D B, et al. Refractory high-entropy alloys [J]. Intermetallics, 2010, 18: 1758
26 Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys [J]. Intermetallics, 2011, 19: 698
27 Maresca F, Curtin W A. Mechanistic origin of high strength in refractory BCC high entropy alloys up to 1900 K [J]. Acta Mater., 2020, 182: 235
28 Zhang Y W, Stocks G M, Jin K, et al. Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys [J]. Nat. Commun., 2015, 6: 8736
29 Lu C Y, Niu L L, Chen N J, et al. Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys [J]. Nat. Commun., 2016, 7: 13564
30 Granberg F, Nordlund K, Ullah M W, et al. Mechanism of radiation damage reduction in equiatomic multicomponent single phase alloys [J]. Phys. Rev. Lett., 2016, 116: 135504
31 El-Atwani O, Li N, Li M, et al. Outstanding radiation resistance of tungsten-based high-entropy alloys [J]. Sci. Adv., 2019, 5: eaav2002
32 Niu C N, Larosa C R, Miao J S, et al. Magnetically-driven phase transformation strengthening in high entropy alloys [J]. Nat. Commun., 2018, 9: 1363
33 Song H Q, Tian F Y, Hu Q M, et al. Local lattice distortion in high-entropy alloys [J]. Phys. Rev. Mater., 2017, 1: 023404
34 Zhang Z J, Mao M M, Wang J W, et al. Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi [J]. Nat. Commun., 2015, 6: 10143
35 Zhang Z J, Sheng H W, Wang Z J, et al. Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy [J]. Nat. Commun., 2017, 8: 14390
36 Zhao S J, Stocks G M, Zhang Y M, et al. Stacking fault energies of face-centered cubic concentrated solid solution alloys [J]. Acta Mater., 2017, 134: 334
37 Nöhring W G, Curtin W A. Dislocation cross-slip in fcc solid solution alloys [J]. Acta Mater., 2017, 128: 135
38 Yang T, Zhao Y L, Tong Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys [J]. Science, 2018, 362: 933
39 Huang S, Huang H, Li W, et al. Twinning in metastable high-entropy alloys [J]. Nat. Commun., 2018, 9: 2381
40 Zhang F, Wu Y, Lou H B, et al. Polymorphism in a high-entropy alloy [J]. Nat. Commun., 2017, 8: 15687
41 Troparevsky M C, Morris J R, Kent P R C, et al. Criteria for predicting the formation of single-phase high-entropy alloys [J]. Phys. Rev., 2015, 5X: 011041
42 Senkov O N, Miller J D, Miracle D B, et al. Accelerated exploration of multi-principal element alloys with solid solution phases [J]. Nat. Commun., 2015, 6: 6529
43 Ding J, Yu Q, Asta M, et al. Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys [J]. Proc. Natl. Acad. Sci. USA, 2018, 115: 8919
44 Li Q J, Sheng H, Ma E. Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways [J]. Nat. Commun., 2019, 10: 3563
45 Tamm A, Abloo A, Klintenberg M, et al. Atomic-scale properties of Ni-based FCC ternary, and quaternary alloys [J]. Acta Mater., 2015, 99: 307
46 Zhang F X, Zhao S J, Jin K, et al. Local structure and short-range order in a NiCoCr solid solution alloy [J]. Phys. Rev. Lett., 2017, 118: 205501
47 Ding Q Q, Zhang Y, Chen X, et al. Tuning element distribution, structure and properties by composition in high-entropy alloys [J]. Nature, 2019, 574: 223
48 Zhang R P, Zhao S T, Ding J, et al. Short-range order and its impact on the CrCoNi medium-entropy alloy [J]. Nature, 2020, 581: 283
49 Wu Y, Zhang F, Yuan X Y, et al. Short-range ordering and its effects on mechanical properties of high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 62: 214
50 Kostiuchenko T, Ruban A V, Neugebauer J, et al. Short-range order in face-centered cubic VCoNi alloys [J]. Phys. Rev. Mater., 2020, 4: 113802
51 Fernández-Caballero A, Wróbel J S, Mummery P M, et al. Short-range order in high entropy alloys: Theoretical formulation and application to Mo-Nb-Ta-V-W system [J]. J. Phase Equilib. Diffus., 2017, 38: 391
52 Feng R, Liaw P K, Gao M C, et al. First-principles prediction of high-entropy-alloy stability [J]. npj Comput. Mater., 2017, 3: 50
53 Santodonato L J, Zhang Y, Feygenson M, et al. Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy [J]. Nat. Commun., 2015, 6: 5964
54 Fantin A, Lepore G O, Manzoni A M, et al. Short-range chemical order and local lattice distortion in a compositionally complex alloy [J]. Acta Mater., 2020, 193: 329
55 Yin B L, Yoshida S, Tsuji N, et al. Yield strength and misfit volumes of NiCoCr and implications for short-range-order [J]. Nat. Commun., 2020, 11: 2507
56 Niu C, Zaddach A J, Oni A A, et al. Spin-driven ordering of Cr in the equiatomic high entropy alloy NiFeCrCo [J]. Appl. Phys. Lett., 2015, 106: 161906
57 Maiti S, Steurer W. Structural-disorder and its effect on mechanical properties in single-phase TaNbHfZr high-entropy alloy [J]. Acta Mater., 2016, 106: 87
58 Seol J B, Bae J W, Kim J G, et al. Short-range order strengthening in boron-doped high-entropy alloys for cryogenic applications [J]. Acta Mater., 2020, 194: 366
59 Smith L T W, Su Y Q, Xu S Z, et al. The effect of local chemical ordering on Frank-Read source activation in a refractory multi-principal element alloy [J]. Int. J. Plast., 2020, 134: 102850
60 Ma E. Unusual dislocation behavior in high-entropy alloys [J]. Scr. Mater., 2020, 181: 127
61 Li X G, Chen C, Zheng H, et al. Complex strengthening mechanisms in the NbMoTaW multi-principal element alloy [J]. npj Comput. Mater., 2020, 6: 70
62 Yin S, Ding J, Asta M, et al. Ab initio modeling of the energy landscape for screw dislocations in body-centered cubic high-entropy alloys [J]. npj Comput. Mater., 2020, 6: 110
63 Antillon E, Woodward C, Rao S I, et al. Chemical short range order strengthening in a model FCC high entropy alloy [J]. Acta Mater., 2020, 190: 29
64 Jian W R, Xie Z C, Xu S Z, et al. Effects of lattice distortion and chemical short-range order on the mechanisms of deformation in medium entropy alloy CoCrNi [J]. Acta Mater., 2020, 199: 352
65 Wu Z K, Tian F Y. Effect of ordering on stacking fault energy of VNiFeCo high entropy alloys [J]. Mater. Today Commun., 2020, 25: 101336
66 Nöhring W G, Curtin W A. Design using randomness: A new dimension for metallurgy [J]. Scr. Mater., 2020, 187: 210
67 Ma E, Wu X L. Tailoring heterogeneities in high-entropy alloys to promote strength-ductility synergy [J]. Nat. Commun., 2019, 10: 5623
68 Basu I, De Hosson J T M. Strengthening mechanisms in high entropy alloys: Fundamental issues [J]. Scr. Mater., 2020, 187: 148
69 Chen B, Li S Z, Zong H X, et al. Unusual activated processes controlling dislocation motion in body-centered-cubic high-entropy alloys [J]. Proc. Natl. Acad. Sci. USA, 2020, 117: 16199
70 Cao F H, Wang Y J, Dai L H. Novel atomic-scale mechanism of incipient plasticity in a chemically complex CrCoNi medium-entropy alloy associated with inhomogeneity in local chemical environment [J]. Acta Mater., 2020, 194: 283
71 Sun X, Lu S, Xie R W, et al. Can experiment determine the stacking fault energy of metastable alloys? [J] Mater. Des., 2021, 199: 109396
72 Zhu C, Lu Z P, Nieh T G. Incipient plasticity and dislocation nucleation of FeCoCrNiMn high-entropy alloy [J]. Acta Mater., 2013, 61: 2993
73 Zhao Y K, Park J M, Jang J I, et al. Bimodality of incipient plastic strength in face-centered cubic high-entropy alloys [J]. Acta Mater., 2021, 202: 124
74 Varvenne C, Luque A, Curtin W A. Theory of strengthening in fcc high entropy alloys [J]. Acta Mater., 2016, 118: 164
75 Reinhard L, Moss S C. Recent studies of short-range order in alloys: The Cowley theory revisited [J]. Ultramicroscopy, 1993, 52: 223
76 Zhao Y K, Wang X T, Cao T Q, et al. Effect of grain size on the strain rate sensitivity of CoCrFeNi high-entropy alloy [J]. Mater. Sci. Eng., 2020, A782: 139281
77 Hong S I, Moon J, Hong S K, et al. Thermally activated deformation and the rate controlling mechanism in CoCrFeMnNi high entropy alloy [J]. Mater. Sci. Eng., 2017, A682: 569
78 Zhou D S, Chen Z H, Ehara K, et al. Effects of annealing on hardness, yield strength and dislocation structure in single crystals of the equiatomic Cr-Mn-Fe-Co-Ni high entropy alloy [J]. Scr. Mater., 2021, 191: 173
79 Ketov S V, Sun Y H, Nachum S, et al. Rejuvenation of metallic glasses by non-affine thermal strain [J]. Nature, 2015, 524: 200
80 Pan J, Ivanov Y P, Zhou W H, et al. Strain-hardening and suppression of shear-banding in rejuvenated metallic glass [J]. Nature, 2020, 578: 559
81 Huang S, Holmström E, Eriksson O, et al. Mapping the magnetic transition temperatures for medium- and high-entropy alloys [J]. Intermetallics, 2018, 95: 80
82 Yao Y G, Huang Z N, Xie P F, et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles [J]. Science, 2018, 359: 1489
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[9] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[10] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[11] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[12] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[13] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[14] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[15] FENG Li, WANG Guiping, MA Kai, YANG Weijie, AN Guosheng, LI Wensheng. Microstructure and Properties of AlCo x CrFeNiCu High-Entropy Alloy Coating Synthesized by Cold Spraying Assisted Induction Remelting[J]. 金属学报, 2023, 59(5): 703-712.
No Suggested Reading articles found!