|
|
Structural Rejuvenation of Metallic Glasses and Its Effect on Mechanical Behaviors |
JIANG Minqiang1,2( ), GAO Yang1,2 |
1.State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China 2.School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China |
|
Cite this article:
JIANG Minqiang, GAO Yang. Structural Rejuvenation of Metallic Glasses and Its Effect on Mechanical Behaviors. Acta Metall Sin, 2021, 57(4): 425-438.
|
Abstract Metallic glasses (MGs) are formed by the deep undercooling of high-temperature melt up to the glass transition temperature, and this process avoids the crystallization of the melt into ordered configurations of atoms. The atomic packing of MGs lacks a long-range periodicity. MGs reside at metastable energy states far away from the equilibrium of thermodynamics, but they are jammed in dynamics. These features provide MGs with remarkable mechanical, physical, and chemical properties, such as very high strength that is close to the ideal limit. However, the plastic deformation of MGs at room temperature is easily localized to form nanoscale shear bands, thereby resulting in limited macroscopic plasticity. Moreover, physical ageing spontaneously reduces their energies toward an equilibrium state, thereby further weakening the plastic deformation ability of MGs, which is known as ageing-induced brittleness. Recent studies have shown that MGs can be rejuvenated with external energy injection into more disordered high-energy states in structure. This process, which is the inverse of physical ageing, can effectively improve the global plasticity of MGs and is expected to solve the problems of shear banding and physical ageing that restrict the applications of such materials. Therefore, the relevant aspects of the rejuvenation of MGs have attracted increasing interest. This article first introduces methods for the rejuvenation of MGs starting from the concepts of ageing and rejuvenation of glasses, and then summarizes the influencing factors of rejuvenation and the effects of rejuvenation on plasticity and other mechanical behaviors of MGs. Furthemore, the physical mechanism of rejuvenation is discussed briefly. Finally, several conclusions are drawn in this field, and some important problems that deserve further investigation are proposed.
|
Received: 30 October 2020
|
|
Fund: National Natural Science Foundation of China (NSFC)(11972345);NSFC Basic Science Center for “Multiscale Problems in Nonlinear Mechanics”(11988102) |
About author: JIANG Minqiang, professor, Tel: (010)82544089, E-mail: mqjiang@imech.ac.cn
|
1 |
Bernal J D. Geometry of the structure of monatomic liquids [J]. Nature, 1960, 185: 68
|
2 |
Luo W K, Sheng H W, Alamgir F M, et al. Icosahedral short-range order in amorphous alloys [J]. Phys. Rev. Lett., 2004, 92: 145502
|
3 |
Sheng H W, Luo W K, Alamgir F M, et al. Atomic packing and short-to-medium-range order in metallic glasses [J]. Nature, 2006, 439: 419
|
4 |
Ma D, Stoica A D, Wang X L. Power-law scaling and fractal nature of medium-range order in metallic glasses [J]. Nat. Mater., 2009, 8: 30
|
5 |
Hirata A, Guan P F, Fujita T, et al. Direct observation of local atomic order in a metallic glass [J]. Nat. Mater., 2011, 10: 28
|
6 |
Klement W, Willens R H, Duwez P. Non-crystalline structure in solidified gold-silicon alloys [J]. Nature, 1960, 187: 869
|
7 |
Inoue A, Zhang T, Masumoto T. Al-La-Ni amorphous alloys with a wide supercooled liquid region [J]. Mater. Trans., 1989, 30: 965
|
8 |
Inoue A, Zhang T, Nishiyama N, et al. Preparation of 16 mm diameter rod of amorphous Zr65Al7.5Ni10Cu17.5 alloy [J]. Mater. Trans., JIM, 1993, 34: 1234
|
9 |
Peker A, Johnson W L. A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 [J]. Appl. Phys. Lett., 1993, 63: 2342
|
10 |
Ma H, Shi L L, Xu J, et al. Discovering inch-diameter metallic glasses in three-dimensional composition space [J]. Appl. Phys. Lett., 2005, 87: 181915
|
11 |
Yao K F, Ruan F, Yang Y Q, et al. Superductile bulk metallic glass [J]. Appl. Phys. Lett., 2006, 88: 122106
|
12 |
Jiang M Q, Duan G H, Dai L H. Metallic glass nanofilms [J]. J. Non-Cryst. Solids, 2011, 357: 1621
|
13 |
Wu Y, Zhou D Q, Song W L, et al. Ductilizing bulk metallic glass composite by tailoring stacking fault energy [J]. Phys. Rev. Lett., 2012, 109: 245506
|
14 |
Luo P, Cao C R, Zhu F, et al. Ultrastable metallic glasses formed on cold substrates [J]. Nat. Commun., 2018, 9: 1389
|
15 |
Li M X, Zhao S F, Lu Z, et al. High-temperature bulk metallic glasses developed by combinatorial methods [J]. Nature, 2019, 569: 99
|
16 |
Song X, Xiao K L, Wu X Q, et al. Nanoparticles produced by nanosecond pulse laser ablation of a metallic glass in water [J]. J. Non-Cryst. Solids, 2019, 517: 119
|
17 |
Dyre J C. Heirs of liquid treasures [J]. Nat. Mater., 2004, 3: 749
|
18 |
Sun X, Mo G, Zhao L Z, et al. Characterization of nanoscale structural heterogeneity in an amorphous alloy by synchrotron small angle X-ray scattering [J]. Acta Phys. Sin., 2017, 66: 176109
|
|
孙 星, 默 广, 赵林志等. 小角X射线散射表征非晶合金纳米尺度结构非均匀 [J]. 物理学报, 2017, 66: 176109
|
19 |
Wei D, Yang J, Jiang M Q, et al. Assessing the utility of structure in amorphous materials [J]. J. Chem. Phys., 2019, 150: 114502
|
20 |
Wei D, Yang J, Jiang M Q, et al. Revisiting the structure-property relationship of metallic glasses: Common spatial correlation revealed as a hidden rule [J]. Phys. Rev., 2019, 99B: 014115
|
21 |
Wang Y J, Wei D, Han D, et al. Does structure determine property in amorphous solids? [J]. Chin J. Theor. Appl. Mech., 2020, 52: 303
|
|
王云江, 魏 丹, 韩 懂等. 非晶态固体的结构可以决定性能吗? [J]. 力学学报, 2020, 52: 303
|
22 |
Peng H L, Li M Z, Wang W H. Structural signature of plastic deformation in metallic glasses [J]. Phys. Rev. Lett., 2011, 106: 135503
|
23 |
Liu Y H, Wang D, Nakajima K, et al. Characterization of nanoscale mechanical heterogeneity in a metallic glass by dynamic force microscopy [J]. Phys. Rev. Lett., 2011, 106: 125504
|
24 |
Hu Y C, Li F X, Li M Z, et al. Five-fold symmetry as indicator of dynamic arrest in metallic glass-forming liquids [J]. Nat. Commun., 2015, 6: 8310
|
25 |
Jiang M Q, Peterlechner M, Wang Y J, et al. Universal structural softening in metallic glasses indicated by boson heat capacity peak [J]. Appl. Phys. Lett., 2017, 111: 261901
|
26 |
Yang J, Wang Y J, Ma E, et al. Structural parameter of orientational order to predict the boson vibrational anomaly in glasses [J]. Phys. Rev. Lett., 2019, 122: 015501
|
27 |
Han D, Wei D, Yang J, et al. Atomistic structural mechanism for the glass transition: Entropic contribution [J]. Phys. Rev., 2020, 101B: 014113
|
28 |
Jiang M Q, Dai L H. Intrinsic correlation between fragility and bulk modulus in metallic glasses [J]. Phys. Rev., 2007, 76B: 054204
|
29 |
Jang D C, Greer J R. Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses [J]. Nat. Mater., 2010, 9: 215
|
30 |
Trexler M M, Thadhani N N. Mechanical properties of bulk metallic glasses [J]. Prog. Mater. Sci., 2010, 55: 759
|
31 |
Tian L, Cheng Y Q, Shan Z W, et al. Approaching the ideal elastic limit of metallic glasses [J]. Nat. Commun., 2012, 3: 609
|
32 |
Jiang M Q, Wilde G, Dai L H. Origin of stress overshoot in amorphous solids [J]. Mech. Mater., 2015, 81: 72
|
33 |
Jiang M Q, Wei Y P, Wilde G, et al. Explosive boiling of a metallic glass superheated by nanosecond pulse laser ablation [J]. Appl. Phys. Lett., 2015, 106: 021904
|
34 |
Zhao Y C, Sun H, Li C L, et al. High temperature deformation behavior of high strength and toughness Ti-Ni base bulk metallic glass composites [J]. Acta Metall. Sin., 2018, 54: 1818
|
|
赵燕春, 孙 浩, 李春玲等. 高强韧Ti-Ni基块体金属玻璃复合材料高温变形行为 [J]. 金属学报, 2018, 54: 1818
|
35 |
Jin C R, Yang S Y, Deng X Y, et al. Effect of nano-crystallization on dynamic compressive property of Zr-based amorphous alloy [J]. Acta Metall. Sin., 2019, 55: 1561
|
|
金辰日, 杨素媛, 邓学元等. 纳米晶化对锆基非晶合金动态压缩性能的影响 [J]. 金属学报, 2019, 55: 1561
|
36 |
Yang J, Duan J, Wang Y J, et al. Complexity of plastic instability in amorphous solids: Insights from spatiotemporal evolution of vibrational modes [J]. Eur. Phys. J., 2020, 43E: 56
|
37 |
Conner R D, Dandliker R B, Scruggs V, et al. Dynamic deformation behavior of tungsten-fiber/metallic-glass matrix composites [J]. Int. J. Impact Eng., 2000, 24: 435
|
38 |
Grimberg A, Baur H, Bochsler P, et al. Solar wind neon from genesis: Implications for the lunar noble gas record [J]. Science, 2006, 314: 1133
|
39 |
Schroers J, Kumar G, Hodges T M, et al. Bulk metallic glasses for biomedical applications [J]. JOM, 2009, 61(9): 21
|
40 |
Huang X, Ling Z, Liu Z D, et al. Amorphous alloy reinforced Whipple shield structure [J]. Int. J. Impact Eng., 2012, 42: 1
|
41 |
Hofmann D C, Hamill L, Christiansen E, et al. Hypervelocity impact testing of a metallic glass-stuffed Whipple shield [J]. Adv. Eng. Mater., 2015, 17: 1313
|
42 |
Jiang M Q, Huang B M, Jiang Z J, et al. Joining of bulk metallic glass to brass by thick-walled cylinder explosion [J]. Scr. Mater., 2015, 97: 17
|
43 |
Yan W, Richard I, Kurtuldu G, et al. Structured nanoscale metallic glass fibres with extreme aspect ratios [J]. Nat. Nanotechnol., 2020, 15: 875
|
44 |
Yu B S, Sun Y H, Bai H Y, et al. Highly energetic and flammable metallic glasses [J]. Sci. China Phys. Mech. Astron., 2020, 63: 276112
|
45 |
Liu Y H, Wang G, Pan M X, et al. Deformation behaviors and mechanism of Ni-Co-Nb-Ta bulk metallic glasses with high strength and plasticity [J]. J. Mater. Res., 2007, 22: 869
|
46 |
Wang W H. Bulk metallic glasses with functional physical properties [J]. Adv. Mater., 2009, 21: 4524
|
47 |
Wang W H. The elastic properties, elastic models and elastic perspectives of metallic glasses [J]. Prog. Mater. Sci., 2012, 57: 487
|
48 |
Liang X B, Fan J W, Zhang Z B, et al. Microstructure and corrosion properties of aluminum base amorphous and nanocrystalline composite coating [J]. Acta Metall. Sin., 2018, 54: 1193
|
|
梁秀兵, 范建文, 张志彬等. 铝基非晶纳米晶复合涂层显微组织与腐蚀性能研究 [J]. 金属学报, 2018, 54: 1193
|
49 |
Zhao Y C, Mao X J, Li W S, et al. Microstructure and corrosion behavior of Fe-15Mn-5Si-14Cr-0.2C amorphous steel [J]. Acta Metall. Sin., 2020, 56: 715
|
|
赵燕春, 毛雪晶, 李文生等. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为 [J]. 金属学报, 2020, 56: 715
|
50 |
Jiang M Q, Jiang F, Keryvin V, et al. Relation between ideal and real strengths of metallic glasses [J]. J. Non-Cryst. Solids, 2012, 358: 3119
|
51 |
Jiang M Q, Dai L H. On the origin of shear banding instability in metallic glasses [J]. J. Mech. Phys. Solids, 2009, 57: 1267
|
52 |
Jiang M Q, Wang W H, Dai L H. Prediction of shear-band thickness in metallic glasses [J]. Scr. Mater., 2009, 60: 1004
|
53 |
Jiang M Q, Dai L H. Shear-band toughness of bulk metallic glasses [J]. Acta Mater., 2011, 59: 4525
|
54 |
Greer A L, Cheng Y Q, Ma E. Shear bands in metallic glasses [J]. Mater. Sci. Eng., 2013, R74: 71
|
55 |
Jiang M Q, Ling Z, Meng J X, et al. Energy dissipation in fracture of bulk metallic glasses via inherent competition between local softening and quasi-cleavage [J]. Philos. Mag., 2008, 88: 407
|
56 |
Jiang M Q, Meng J X, Keryvin V, et al. Crack branching instability and directional stability in dynamic fracture of a tough bulk metallic glass [J]. Intermetallics, 2011, 19: 1775
|
57 |
Jiang M Q, Dai L H. The “tension transformation zone” model of amorphous alloys [J]. Chin. Sci. Bull., 2017, 62: 2346
|
58 |
Amir A, Oreg Y, Imry Y. On relaxations and aging of various glasses [J]. Proc. Natl. Acad. Sci. USA, 2012, 109: 1850
|
59 |
Gallino I, Busch R. Relaxation pathways in metallic glasses [J]. JOM, 2017, 69: 2171
|
60 |
Ruta B, Pineda E, Evenson Z. Relaxation processes and physical aging in metallic glasses [J]. J. Phys.: Condens. Matter, 2017, 29: 503002
|
61 |
Lee S C, Lee C M, Lee J C, et al. Structural disordering process of an amorphous alloy driven by the elastostatic compression at room temperature [J]. Appl. Phys. Lett., 2008, 92: 151906
|
62 |
Park K W, Lee C M, Wakeda M, et al. Elastostatically induced structural disordering in amorphous alloys [J]. Acta Mater., 2008, 56: 5440
|
63 |
Park K W, Lee C M, Lee M R, et al. Paradoxical phenomena between the homogeneous and inhomogeneous deformations of metallic glasses [J]. Appl. Phys. Lett., 2009, 94: 021907
|
64 |
Zhang Y, Wang W H, Greer A L. Making metallic glasses plastic by control of residual stress [J]. Nat. Mater., 2006, 5: 857
|
65 |
Concustell A, Méar F O, Suriñach S, et al. Structural relaxation and rejuvenation in a metallic glass induced by shot-peening [J]. Philos. Mag. Lett., 2009, 89: 831
|
66 |
González S, Fornell J, Pellicer E, et al. Influence of the shot-peening intensity on the structure and near-surface mechanical properties of Ti40Zr10Cu38Pd12 bulk metallic glass [J]. Appl. Phys. Lett., 2013, 103: 211907
|
67 |
Lee M H, Lee K S, Das J, et al. Improved plasticity of bulk metallic glasses upon cold rolling [J]. Scr. Mater., 2010, 62: 678
|
68 |
Haruyama O, Kisara K, Yamashita A, et al. Characterization of free volume in cold-rolled Zr55Cu30Ni5Al10 bulk metallic glasses [J]. Acta Mater., 2013, 61: 3224
|
69 |
Xu Y L, Shi B, Ma Z K, et al. Evolution of shear bands, free volume, and structure in room temperature rolled Pd40Ni40P20 bulk metallic glass [J]. Mater. Sci. Eng., 2015, A623: 145
|
70 |
Ketov S V, Sun Y H, Nachum S, et al. Rejuvenation of metallic glasses by non-affine thermal strain [J]. Nature, 2015, 524: 200
|
71 |
Xiao H B, Wang X D, Zhang P, et al. Contribution of cryogenic thermal cycling to the atomic dynamics in a La-based bulk metallic glass with different initial states [J]. J. Appl. Phys., 2020, 127: 205104
|
72 |
Dmowski W, Yokoyama Y, Chuang A, et al. Structural rejuvenation in a bulk metallic glass induced by severe plastic deformation [J]. Acta Mater., 2010, 58: 429
|
73 |
Meng F Q, Tsuchiya K, Seiichiro II, et al. Reversible transition of deformation mode by structural rejuvenation and relaxation in bulk metallic glass [J]. Appl. Phys. Lett., 2012, 101: 121914
|
74 |
Zhou H B, Hubek R, Peterlechner M, et al. Two-stage rejuvenation and the correlation between rejuvenation behavior and the boson heat capacity peak of a bulk metallic glass [J]. Acta Mater., 2019, 179: 308
|
75 |
Tong Y, Dmowski W, Yokoyama Y, et al. Recovering compressive plasticity of bulk metallic glasses by high-temperature creep [J]. Scr. Mater., 2013, 69: 570
|
76 |
Tong Y, Dmowski W, Bei H, et al. Mechanical rejuvenation in bulk metallic glass induced by thermo-mechanical creep [J]. Acta Mater., 2018, 148: 384
|
77 |
Pan J, Wang Y X, Guo Q, et al. Extreme rejuvenation and softening in a bulk metallic glass [J]. Nat. Commun., 2018, 9: 560
|
78 |
Pan J, Ivanov Y P, Zhou W H, et al. Strain-hardening and suppression of shear-banding in rejuvenated bulk metallic glass [J]. Nature, 2020, 578: 559
|
79 |
Turnbull D. Kinetics of solidification of supercooled liquid mercury droplets [J]. J. Chem. Phys., 1952, 20: 411
|
80 |
Turnbull D, Cohen M H. Free-volume model of the amorphous phase: Glass transition [J]. J. Chem. Phys., 1961, 34: 120
|
81 |
Debenedetti P G, Stillinger F H. Supercooled liquids and the glass transition [J]. Nature, 2001, 410: 259
|
82 |
Kauzmann W. The nature of the glassy state and the behavior of liquids at low temperatures [J]. Chem. Rev., 1948, 43: 219
|
83 |
Harmon J S, Demetriou M D, Johnson W L, et al. Deformation of glass forming metallic liquids: Configurational changes and their relation to elastic softening [J]. Appl. Phys. Lett., 2007, 90: 131912
|
84 |
Tong Y, Iwashita T, Dmowski W, et al. Structural rejuvenation in bulk metallic glasses [J]. Acta Mater., 2015, 86: 240
|
85 |
Sun Y H, Concustell A, Greer A L. Thermomechanical processing of metallic glasses: Extending the range of the glassy state [J]. Nat. Rev. Mater., 2016, 1: 16039
|
86 |
Bouchaud J P, Dupuis V, Hammann J, et al. Separation of time and length scales in spin glasses: Temperature as a microscope [J]. Phys. Rev., 2001, 65B: 024439
|
87 |
Wolynes P G. Spatiotemporal structures in aging and rejuvenating glasses [J]. Proc. Natl. Acad. Sci. USA, 2009, 106: 1353
|
88 |
Méar F O, Lenk B, Zhang Y, et al. Structural relaxation in a heavily cold-worked metallic glass [J]. Scr. Mater., 2008, 59: 1243
|
89 |
Battezzati L, Riontino G, Baricco M, et al. A DSC study of structural relaxation in metallic glasses prepared with different quenching rates [J]. J. Non-Cryst. Solids, 1984, 61-62: 877
|
90 |
Lee J C. Calorimetric study of β-relaxation in an amorphous alloy: An experimental technique for measuring the activation energy for shear transformation [J]. Intermetallics, 2014, 44: 116
|
91 |
Park K W, Lee C M, Wakeda M, et al. Homogeneous deformation of bulk amorphous alloys during elastostatic compression and its packing density dependence [J]. Scr. Mater., 2008, 59: 710
|
92 |
Louzguine-Luzgin D V, Zadorozhnyy V Y, Ketov S V, et al. On room-temperature quasi-elastic mechanical behaviour of bulk metallic glasses [J]. Acta Mater., 2017, 129: 343
|
93 |
Cao Q P, Li J F, Zhou Y H, et al. Free-volume evolution and its temperature dependence during rolling of Cu60Zr20Ti20 bulk metallic glass [J]. Appl. Phys. Lett., 2005, 87: 101901
|
94 |
Cao Q P, Li J F, Zhou Y H, et al. Mechanically driven phase separation and corresponding microhardness change in Cu60Zr20Ti20 bulk metallic glass [J]. Appl. Phys. Lett., 2005, 86: 081913
|
95 |
Ebner C, Escher B, Gammer C, et al. Structural and mechanical characterization of heterogeneities in a CuZr-based bulk metallic glass processed by high pressure torsion [J]. Acta Mater., 2018, 160: 147
|
96 |
Flores K M, Dauskardt R H. Mean stress effects on flow localization and failure in a bulk metallic glass [J]. Acta Mater., 2001, 49: 2527
|
97 |
Qu R T, Calin M, Eckert J, et al. Metallic glasses: Notch-insensitive materials [J]. Scr. Mater., 2012, 66: 733
|
98 |
Li W D, Bei H B, Gao Y F. Effects of geometric factors and shear band patterns on notch sensitivity in bulk metallic glasses [J]. Intermetallics, 2016, 79: 12
|
99 |
Ding G, Li C, Zaccone A, et al. Ultrafast extreme rejuvenation of metallic glasses by shock compression [J]. Sci. Adv., 2019, 5: eaaw6249
|
100 |
Saida J, Yamada R, Wakeda M, et al. Thermal rejuvenation in metallic glasses [J]. Sci. Technol. Adv. Mater., 2017, 18: 152
|
101 |
Wakeda M, Saida J, Li J, et al. Controlled rejuvenation of amorphous metals with thermal processing [J]. Sci. Rep., 2015, 5: 10545
|
102 |
Kovacs A J. Transition vitreuse dans les polymères amorphes. Etude phénoménologique [J]. Adv. Polym. Sci., 1963, 3: 394
|
103 |
Das A, Dufresne E M, Maaß R. Structural dynamics and rejuvenation during cryogenic cycling in a Zr-based metallic glass [J]. Acta Mater., 2020, 196: 723
|
104 |
Wang C, Yang Z Z, Ma T, et al. High stored energy of metallic glasses induced by high pressure [J]. Appl. Phys. Lett., 2017, 110: 111901
|
105 |
Miyazaki N, Wakeda M, Wang Y J, et al. Prediction of pressure-promoted thermal rejuvenation in metallic glasses [J]. npj Comput. Mater., 2016, 2: 16013
|
106 |
Yokoyama Y, Yamasaki T, Liaw P K, et al. Study of the structural relaxation-induced embrittlement of hypoeutectic Zr-Cu-Al ternary bulk glassy alloys [J]. Acta Mater., 2008, 56: 6097
|
107 |
Wu T W, Spaepen F. The relation between enbrittlement and structural relaxation of an amorphous metal [J]. Philos. Mag., 1990, 61B: 739
|
108 |
Jin H J, Gu X J, Wen P, et al. Pressure effect on the structural relaxation and glass transition in metallic glasses [J]. Acta Mater., 2003, 51: 6219
|
109 |
Lee S J, Yoo B G, Jang J I, et al. Irreversible structural change induced by elastostatic stress imposed on an amorphous alloy and its influence on the mechanical properties [J]. Met. Mater. Int., 2008, 14: 9
|
110 |
Zhang M, Wang Y M, Li F X, et al. Mechanical relaxation-to-rejuvenation transition in a Zr-based bulk metallic glass [J]. Sci. Rep., 2017, 7: 625
|
111 |
Spaepen F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses [J]. Acta Metall. Mater., 1977, 25: 407
|
112 |
Argon A S. Plastic deformation in metallic glasses [J]. Acta Metall., 1979, 27: 47
|
113 |
Langer J S. Dynamics of shear-transformation zones in amorphous plasticity: Formulation in terms of an effective disorder temperature [J]. Phys. Rev., 2004, 70E: 041502
|
114 |
Jiang M Q, Jiang S Y, Ling Z, et al. Smaller Deborah number inducing more serrated plastic flow of metallic glass [J]. Comp. Mater. Sci., 2009, 46: 767
|
115 |
Gao Y F. An implicit finite element method for simulating inhomogeneous deformation and shear bands of amorphous alloys based on the free-volume model [J]. Modell. Simul. Mater. Sci. Eng., 2006, 14: 1329
|
116 |
Jiang M Q, Wilde G, Dai L H. Shear band dilatation in amorphous alloys [J]. Scr. Mater., 2017, 127: 54
|
117 |
Sun X, Ding G, Mo G, et al. Dilatancy signatures of amorphous plasticity probed by X-ray synchrotron radiation [J]. Intermetallics, 2019, 107: 34
|
118 |
Lu Y Z, Jiang M Q, Lu X, et al. Dilatancy of shear transformations in a colloidal glass [J]. Phys. Rev. Appl., 2018, 9: 014023
|
119 |
Scalliet C, Berthier L. Rejuvenation and memory effects in a structural glass [J]. Phys. Rev. Lett., 2019, 122: 255502
|
120 |
Lunkenheimer P, Schneider U, Brand R, et al. Glassy dynamics [J]. Contemp. Phys., 2000, 41: 15
|
121 |
Küchemann S, Maaß R. Gamma relaxation in bulk metallic glasses [J]. Scr. Mater., 2017, 137: 5
|
122 |
Song L J, Xu W, Huo J T, et al. Activation entropy as a key factor controlling the memory effect in glasses [J]. Phys. Rev. Lett., 2020, 125: 135501
|
123 |
Luo P, Li Y Z, Bai H Y, et al. Memory effect manifested by a boson peak in metallic glass [J]. Phys. Rev. Lett., 2016, 116: 175901
|
124 |
Lee S C, Lee C M, Yang J W, et al. Microstructural evolution of an elastostatically compressed amorphous alloy and its influence on the mechanical properties [J]. Scr. Mater., 2008, 58: 591
|
125 |
Guo W, Yamada R, Saida J. Rejuvenation and plasticization of metallic glass by deep cryogenic cycling treatment [J]. Intermetallics, 2018, 93: 141
|
126 |
Ke H B, Wen P, Peng H L, et al. Homogeneous deformation of metallic glass at room temperature reveals large dilatation [J]. Scr. Mater., 2011, 64: 966
|
127 |
Gelin S, Tanaka H, Lemaître A. Anomalous phonon scattering and elastic correlations in amorphous solids [J]. Nat. Mater., 2016, 15: 1177
|
128 |
Schirmacher W, Ruocco G, Scopigno T. Acoustic attenuation in glasses and its relation with the boson peak [J]. Phys. Rev. Lett., 2007, 98: 025501
|
129 |
Shintani H, Tanaka H. Universal link between the boson peak and transverse phonons in glass [J]. Nat. Mater., 2008, 7: 870
|
130 |
Luo P, Wen P, Bai H Y, et al. Relaxation decoupling in metallic glasses at low temperatures [J]. Phys. Rev. Lett., 2017, 118: 225901
|
131 |
Qiao J C, Wang Y J, Zhao L Z, et al. Transition from stress-driven to thermally activated stress relaxation in metallic glasses [J]. Phys. Rev., 2016, 94B: 104203
|
132 |
Yuan C C, Lv Z W, Pang C M, et al. Ultrasonic-assisted plastic flow in a Zr-based metallic glass [J]. Sci. China Mater., 2020, 64: 448
|
133 |
Huang B, Ge T P, Liu G L, et al. Density fluctuations with fractal order in metallic glasses detected by synchrotron X-ray nano-computed tomography [J]. Acta Mater., 2018, 155: 69
|
134 |
Ross P, Küchemann S, Derlet P M, et al. Linking macroscopic rejuvenation to nano-elastic fluctuations in a metallic glass [J]. Acta Mater., 2017, 138: 111
|
135 |
Suzuki Y, Haimovich J, Egami T. Bond-orientational anisotropy in metallic glasses observed by X-ray diffraction [J]. Phys. Rev., 1987, 35B: 2162
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|